
Math 1b TA: Padraic Bartlett

Recitation 1: Matrices!

Week 1 Caltech 2011

1 Random Question

Suppose you have a circle S in the plane with diameter 100, and 32 lines in the plane that
intersect your circle. Show that there is always a circle of radius 3 contained within the
interior of S that doesn’t intersect any of these lines.

2 Administrivia

Here are most of the random administrative details for the course:

• My email: padraic@caltech.edu

• My office: 360 Sloan.

• My office hours: 10-11pm on Sunday night/ by appointment.

• My website: www.its.caltech.edu/∼padraic. Course notes for every recitation will be
posted here, ideally within a few days of the recitation.

• HW policy: The course-wide policy is that every student is allowed at most 1 late
HW without a note from the deans or health center, with an extension of at most
one week. Homeworks after this one will require a note from the health center or the
deans: it bears noting that both entities are remarkably kind, and as long as your
reason for needing more time is not something like “all-night SC2 marathon,” they’ll
grant an extension.

• Random questions: I post a random question at the start of every recitation! If you’ve
seen the material in rec before, and get distracted, they’re meant to offer something
mathematically interesting to focus on until the lecture returns to a place you haven’t
seen. Because we’re at Caltech, and pretty much anything we talk about in Math
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1 *some* of you have seen before, it struck me as a decent way to avoid boring
some students without losing others. If you solve any of them, tell me! I am always
interested to see solutions.

3 Matrices and Solving Systems of Equations

Why do we study matrices? Later on in mathematics, you’ll learn that there are dozens of
subtle mathematical reasons to examine matrices. However, from a beginning linear algebra
student’s perspective, there’s one main reason we study matrices: to solve systems of linear
equations.

For example, suppose that we wanted to find all of the values of w, x, y, z that satisfy
the following three equations simultaneously:

w + 2x + 3y + 0z = 0
−w + 2x + 0y + z = 2
0w + 4x + y + z = 4.
2w + 4x + 6y + 0z = 0


How can we do this? Well, as it turns out, matrices provide an excellent way to sys-

tematically find solutions to systems like the above. Specifically, we have the following
three-step process:

1. First, we turn this system of equations into a matrix, made out of the coefficients of
the above equations:

w + 2x + 3y + 0z = 0
−w + 2x + 0y + z = 2
0w + 4x + y + z = 4
2w + 4x + 6y + 0z = 0

 −→


1 2 3 0 0
−1 2 0 1 2

0 4 1 1 4
2 4 6 0 0

 .

But wait – what’s that vertical bar mean? That bar is a bit of shorthand that allows us
to distinguish between the matrix entries that correspond to our variables (w, x, y, z),
and those that correspond to the constants our equations above are trying to be
equal to. In essence, the matrix entries to the left of the bar above are what we’re
really trying to study and deal with: the entries to the right are in some sense just
placeholders, which we have in our matrix so we can keep track of the constants more
easily.

2. Now, what we want to do is reduce the coefficient-part of our matrix (again, the part
to the left of the vertical bar) into its reduced row-echelon form1. How do we do this?

1A matrix is in reduced row-echelon form if

• the leading coefficient (first nonzero entry) of every row is 1,

• the leading coefficient of the k-th row is strictly to the right of the leading coefficient of the k − 1-th
row,

• the leading coefficient of any row is the only nonzero entry in its respective column, and

• all of the zero rows are at the bottom of the matrix.
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Via pivots!

First, we should say what a pivot is:

Definition. If A is a matrix such that its (i, j)-th entry aij is nonzero, pivoting at
(i, j) is simply performing the following two matrix operations:

• First, multiply the i-th row by 1/aij . This makes the (i, j)-th entry 1.

• Then, subtract akj-many copies of the i-th row from the k-th row, for every
k 6= i. This makes every other entry in the j-th column equal to 0.

To reduce our matrix of coefficients to reduced row-echelon form, then, we just have
to do the following:

• Find the furthest-left column j1 that’s not made entirely of zeroes.

• By swapping rows, make it so that a1,j1 is nonzero.

• Pivot at (1, j1).

• Now, find the furthest-left column j2 that’s not equal to j1 and not made entirely
of zeroes.

• By swapping rows, make it so that a2,j2 is nonzero.

• Pivot at (2, j2).

• *Now,* find the furthest-left column j3 that’s not equal to j1 or j2 and not made
entirely of zeroes . . . and basically keep repeating this process until your matrix
is in reduced row-echelon form!

In practice, what usually winds up happening is that you will first pivot at (1,1), then
at (2,2), then at (3,3) . . . so on and so forth until your matrix is in reduced row-echelon
form. However, you sometimes might wind up having to switch rows around to make
this possible; also, you might have all-zero columns which mean that you have to skip
over columns occasionally! This is why we write up the above process: it will always
work, and without fail transform your matrix into reduced row-echelon form.

These descriptions are kind of dry without an example: so let’s calculate one. Specif-
ically, let’s return to our matrix

1 2 3 0 0
−1 2 0 1 2

0 4 1 1 4
2 4 6 0 0

 .

If we follow the above process, we want to pivot on the furthest-left entry we can
get into row 1. In this case, we don’t have to switch any rows to do this, as (1, 1) is
already nonzero: so we can just pivot there, at (1,1).

To do this, first multiply row 1 by 1/a11 = 1, and then
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• subtract a21 = −1 copies of row 1 from row 2,

• subtract a31 = 0 copies of row 1 from row 3, and finally

• subtract a41 = 2 copies of row 1 from row 4.

Doing this yields the matrix 
1 2 3 0 0
0 4 3 1 2
0 4 1 1 4
0 0 0 0 0

 .

Now, we look to pivot in the furthest-left column 6= 1 in row 2. Again, we don’t have
to swap any rows to do this, as (2,2) is already nonzero.

So, let’s pivot there, at (2,2). To do this, we first multiply row 2 by 1/a22 = 1/4, and
then

• subtract a12 = 2 copies of row 2 from row 1,

• subtract a32 = 4 copies of row 2 from row 3, and finally

• subtract a42 = 0 copies of row 2 from row 4.

Doing this yields the matrix


1 0 3/2 −1/2 −1
0 1 3/4 1/4 1/2
0 0 −2 0 2
0 0 0 0 0

 .

Finally, we want to find the furthest-left nonzero entry we can get in row 3 that doesn’t
live in columns 1 or 2: again, as (3,3) is already nonzero, we don’t have to move any
rows around and can just pivot there.

Pivoting at (3,3) just requires us to multiply row 3 by 1/(−2) = −1/2, and then

• subtract a13 = 3/2 copies of row 3 from row 1,

• subtract a23 = 3/4 copies of row 3 from row 2, and finally

• subtract a43 = 0 copies of row 3 from row 4.

Doing this yields the matrix
1 0 0 −1/2 1/2
0 1 0 1/4 5/4
0 0 1 0 −1
0 0 0 0 0

 ,

which is now in reduced row-echelon form.
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3. With this matrix in hand, finding the solutions to our original system is actually
pretty simple. How? Well, just do the following two things:

(a) To determine if your system is consistent – i.e. if any solutions exist at all! –
simply look at all of the zero-rows in the coefficient part of our matrix. If the
constant entry in this row is not also zero, your system is inconsistent – i.e. no
solution exists. That’s because this row of the matrix is corresponding to the
equation 0x1+0x2+. . . 0xn =(something not zero), which we know is impossible.
Conversely, if this never happens, your system is consistent!







1 0 0 −1 2 1 2

0 1 0 1 /4 5 4

0 0 1 0 −1
0 0 0 0 0







/ /
/

The teal row above is the only zero row in our matrix: because its
corresponding entry on the side of our matrix that’s keeping track of the

constants is 0, we know our matrix is consistent.

(b) If your system *is* consistent, it’s also really easy to express the solutions to
your system! To do this, divide the variables you’re solving for into two kinds:

• the “fixed” variables: those variables whose column in the coefficient matrix
is one of the leading-coefficient columns we turned into a unit vector when
reducing our matrix.

• the “free” variables: the variables whose column in the coefficient matrix
was not one of the leading-coefficient columns.

For example, in the matrix we’ve been working with, the variables w, x, and y
are all fixed, as their columns (highlighted in pink) all correspond to the unit
vectors we made while pivoting. However, the variable z (column highlighted in
yellow) is free, as we didn’t pivot there.







1 0 0 −1 2 1 2

0 1 0 1 /4 5 4

0 0 1 0 −1
0 0 0 0 0







/ /
/

Once you’ve divided up your variables this way, look at the rows of our reduced
matrix. Specifically, notice the following: in every nonzero row, there is exactly
*1* fixed variable. Therefore, we can always write the fixed variables in terms of
the free variables! Therefore, we can always express the solutions to our system
of equations in the form(

(fixed var. 1 expressed via free var’s), . . . (fixed var. m expressed via free var’s),

(free variable 1), . . . (free variable n)
)
.
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For a concrete example of what we’re talking about above, return to our matrix
1 0 0 −1/2 1/2
0 1 0 1/4 5/4
0 0 1 0 −1
0 0 0 0 0

 .

It corresponds to the three linear equations w + −z/2 = 1/2
x + z/4 = 5/4

y = −1

 ,
which we can rewrite as

w = 1/2 + z/2

x = 5/4− z/4
y = −1.

In other words, we can express the solutions to our system as the collection of
vectors of the form

(1/2 + z/2, 5/4− z − 4,−1, z),

where z is allowed to range over all of R.

4 Matrices and Operations

The above process shows how we can use matrices to systematically find solutions to systems
of linear equations, via this system of “reducing” a matrix to its reduced row-echelon form.
When we did this reduction, we used a number of different ways of “manipulating” the rows
of the matrix. Specifically, we used the following three transforms repeatedly:

• Switching two rows.

• Multiplying a row by a constant.

• Adding a constant multiple of one row to another.

One question we can ask, then, is whether we can perform such operations via matrices!
In other words: can we find a matrix U such that for any n× n matrix A,

UA = A with row 1 and row 5 of A switched?

Or

UA = A with row 1 multiplied by π?

As it turns out, yes! Such matrices are called elementary matrices, and have the
following forms:
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E =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 λ 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, j)-th spot, multiplying A on the left by this matrix adds λ times row j

of A to row i of A.

E =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 λ 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, i)-th spot, multiplying A on the left by this matrix multiplies A’s i-th

row by λ.

E =














1 0 0 0 0

0 1 0 0 0

0 0
... 1 0

0 0 1
... 0

0 0
. . . 0 0 0

0 0 0 0 1














. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . . . . .

The matrix above is the standard identity matrix with its i-th and j-th columns
(highlighted) switched. Multiplying A on the left by this matrix switches A’s i-th and j-th

rows.

Prove these properties to yourself if you don’t believe them!
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