
Math 1b TA: Padraic Bartlett

Recitation 4: The Gram-Schmidt Process

Week 4 Caltech 2011

1 Random Question

Consider an infinite Z× Z grid of squares, finitely many of which are marked 1 (alive)and
the rest of which are marked 0 (dead). We “iterate” this grid of squares by implementing
the following three rules simultaneously:

• If a live cell has < 2 neighbors1, it dies of loneliness.

• If a live cell has > 3 neighbors, it dies of overcrowding.

• If a dead cell has precisely 3 neighbors, it becomes alive.

Ten consecutive iterations of the rules described above.

Can you find some configuration of cells that, under the above rules, never stops chang-
ing? (i.e. in the example above, the system becomes completely empty after the next step.
Is this inevitable?)

2 HW comments

• Section average: 80%, or 64/80.

• There were a few, somewhat critical issues that cropped up a lot on this HW, which
I’d like to just briefly repeat here:

• In general, *always* state *why* you’re doing what you’re doing. If you’re using
a theorem, state it! If you’re making a claim about matrices, tell us why it’s true!
On these HW’s, the matrices you get at the end of your work are really the least
important parts of the problems; the methods you use to get there are what we really
care about.

1The neighbors of a cell are the 8 cells that surround it in our grid.
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• Many matrices do not have inverses! In general, never assume that A−1 exists for a
general matrix A.

• Also, matrix multiplication does not commute! In other words, there are many ma-
trices A,B such that AB 6= BA. Try to avoid accidentally assuming this!

• Similarly, remember how the transpose and inverse operations commute across mul-
tiplication: (AB)T = BTAT , and (AB)−1 = B−1A−1.

• Remember your basic logic! If you are asked to prove an if and only if statement,
make sure you’re proving *two* statements: the “if” part, and the “only if” part! See
me if you’re confused; I have lectures I gave last quarter that should be helpful in
clearing this up.

• In general: please, please, if you’re confused, contact me! I’m usually up quite late
and at odd hours; if you have HW questions, I far prefer that you ask me than to
remain confused and not know what’s going on.

3 Gram-Schmidt: The Motivation

When we study vector spaces, we’ve often found that having a basis is a remarkably useful
thing. If we have a basis for a vector space, we really understand it a lot better than when
we don’t: they allow us to express *all* of the elements in the entire space as just some
sum of elements in the basis, which lets us characterize a very big thing (the vector space
itself) via some much smaller thing (its basis.)

However, some bases are more useful than others! Take, for example, the standard basis
for Rn:

(1, 0, 0, . . . , 0) = e1
(0, 1, 0, . . . , 0) = e2

...
(0, 0, 0, . . . , 1) = en

This basis has two remarkably useful properties:

• All of the elements in this basis have length 1, as
√
〈ei, ei〉 =

√
1 = 1.

• Any two distinct elements in this basis are orthogonal, as 〈ei, ej〉 = 0.

These two properties are remarkably useful! So useful, in fact, that we give such bases
a special name: any basis that has these two properties is called an orthonormal basis.
(A basis that has just the first property is called a normal basis; a basis that has just the
second property is called an orthogonal basis.)

So: suppose we have some finite-dimensional space V and a basis B for V . Is there a
way to turn B into one of these really nice orthonormal bases?

As it turns out: yes!
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4 Gram-Schmidt: The Algorithm

To do this, we use the Gram-Schmidt process, which we describe here:

• As input, we take in a finite-dimensional space V and a basis B for V . As output, we
will create an orthogonal basis U for B, and then make an orthonormal basis E for
B using U .

• Suppose that B = {b1, . . .bn}. We create n vectors u1,un and n vectors {e1, . . . en}
from the elements in B inductively, as follows:

u1 = b1, e1 =
u1

‖u1‖

u2 = b2 − proju1
(b2), e2 =

u2

‖u2‖

u3 = b3 − proju1
(b3)− proju2

(b3), e3 =
u3

‖u3‖
...

...

un = bn −
n−1∑
j=1

projuj
(bn), en =

un

‖un‖
,

where the projection operator proju(v) is defined as follows:

proju(v) =
〈u,v〉
〈u,u〉

u.

• U , the collection of the various ui’s, clearly has the same span as B, as you can write
any of the bi’s in terms of elements from U (by our above definitions.) As well, you
can prove by induction that for any ui,uj with i 6= j, these two vectors are orthogonal:
to do this,

– start by showing that 〈u1,u2〉 is 0,

– use this to show that 〈u1,u3〉 is also 0, and

– inductively show that 〈u1,uk〉, for every k, and then

– use induction again! (i.e. you’re doing a kind of “double-induction) to show that
〈uj ,uk〉 is 0 for any j 6= k. i.e. induct on j and then on k: the three steps above
have given you your base cases. See me if you’d like to see a full proof of this!

• Given this, we’re done – we’ve shown that U is an orthogonal basis for V , and thus
(because E is just U with all of its vectors normalized to length 1) we know that E is
an orthonormal basis for V .
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5 Gram-Schmidt: The Example

To illustrate how this goes, we study an example:

Example. Use Gram-Schmidt to turn the basis {(1, 1, 0), (1, 0, 1), (0, 1, 1)} for R3 into an
orthonormal basis.

Proof. So: via the Gram-Schmidt algorithm, we define the vectors u1,u2,u3 as follows:

u1 = (1, 1, 0),

u2 = (1, 0, 1)− proj(1,1,0) ((1, 0, 1))

= (1, 0, 1)− 〈(1, 1, 0), (1, 0, 1)〉
〈(1, 1, 0), (1, 1, 0)〉

· (1, 1, 0)

= (1, 0, 1)− 1

2
· (1, 1, 0)

=

(
1

2
,−1

2
, 0

)
u3 = (0, 1, 1)− proj(1,1,0) ((0, 0, 1))− proj( 1

2
,− 1

2
,0) ((0, 1, 1))

= (0, 1, 1)− 〈(1, 1, 0), (0, 1, 1)〉
〈(1, 1, 0), (1, 1, 0)〉

· (1, 1, 0)−
〈
(
1
2 ,−

1
2 , 0
)
, (0, 1, 1)〉

〈
(
1
2 ,−

1
2 , 0
)
,
(
1
2 ,−

1
2 , 0
)
〉
·
(

1

2
,−1

2
, 0

)
= (0, 1, 1)− 1

2
· (1, 1, 0)− 1/2

3/2
·
(

1

2
,−1

2
, 0

)
= (0, 1, 1)−

(
1

2
,
1

2
, 0

)
−
(

1

6
,−1

6
,
1

3

)
=

(
−2

3
,
2

3
,
2

3

)
.

These three vectors then form an orthogonal basis U for R3. To turn them into an
orthonormal basis, we divide them by their length:

e1 =
u1

‖u1‖

=
1√

〈(1, 1, 0), (1, 1, 0)〉
(1, 1, 0)

=
1√
2

(1, 1, 0),

e2 =
u2

‖u2‖

=
1√

〈
(
1
2 ,−

1
2 , 0
)
, (
(
1
2 ,−

1
2 , 0
)
〉

(
1

2
,−1

2
, 0

)

=
1√
3/2

(
1

2
,−1

2
, 0

)
,
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e3 =
u3

‖u3‖

=
1√

〈
(
−2

3 ,
2
3 ,

2
3

)
,
(
−2

3 ,
2
3 ,

2
3

)
〉

(
−2

3
,
2

3
,
2

3

)

=
1√
4/3

(
−2

3
,
2

3
,
2

3

)
.

The vectors {e1, e2, e3} then form an orthonormal basis for R3, which is what we sought.

6 Gram-Schmidt: The Applications

Gram-Schmidt has a number of really useful applications: here are two quick and elegant
results.

Proposition 1 Suppose that V is a finite-dimensional vector space with basis {b1 . . . bn},
and {u1, . . .un} is the orthogonal (not orthonormal!) basis that the Gram-Schmidt process
creates from the bi’s.

Let U denote the matrix with rows given by the vectors {u1, . . .un}, and let B denote
the matrix with rows given by the matrix {b1, . . . bn}. Then, we have that

B =



1 0 0 0 . . . 0
〈b2,u1〉
〈u1,u1〉 1 0 0 . . . 0
〈b3,u1〉
〈u2,u1〉

〈b3,u2〉
〈u2,u2〉 1 0 . . . 0

〈b4,u1〉
〈u1,u1〉

〈b4,u2〉
〈u2,u2〉

〈b4,u3〉
〈u3,u3〉 1 . . . 0

...
...

...
...

. . .
...

〈bn,u1〉
〈u1,u1〉

〈bn,u2〉
〈u2,u2〉

〈bn,u3〉
〈u3,u3〉

〈bn,u4〉
〈u4,u4〉 . . . 1


· U

Proof. Just solve the equations given by the Gram-Schmidt process for the bi entries: this
tells you which combinations of the U rows will yield an element of B.

The above result may not look too interesting now, but when we get to eigenvalues and
change-of-basis matrices, it will come in handy.

Another nice result, whose utility is much more obvious, is the following:

Proposition 2 For V a vector space, U a finite-dimensional subspace of V , B = {b1 . . . bn}
an orthogonal basis for U , and any vector x in V , we define the orthogonal projection
of x onto U as the following vector in U :

projU (x) =
n∑

i=1

projbi
(x).

This vector is the closest vector in U to x.
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We reserve the proof of this statement for class, and instead focus on an example of its
use:

Example. Let V = C[0, 1], the space of all continuous functions on the interval [0, 1]; as
the sum of any two continuous functions is again a continuous function, and scalar multiples
of continuous functions is still continuous, this is clearly a vector space. Let U denote all of
the polynomials with real coefficients and degree ≤ 2; this is clearly a subspace of V , with
basis {1, x, x2}.

What is the closest element in U to the element ex in V ?

Proof. So: first, recall that the inner-product on the space of all real-valued continuous
functions from 0 to 1 is defined as the following:

〈f, g〉 =

∫ 1

0
f(x)g(x)dx.

We seek to find the closest degree ≤ 2-polynomial to ex with respect to this idea of
distance: in other words, we’re trying to find a polynomial that stays close to ex on *all*
of [0,1]. (This contrasts nicely with Taylor series, which only try to approximate a given
function at a single point.)

To do this, we need to do just two things:

1. Find an orthogonal basis for U , and

2. Use this to find the orthogonal projection of ex onto U .

To do the first, we apply the Gram-Schmidt process to the basis {1, x, x2}:

u1 = 1,

u2 = x− proj1 (x)

= x− 〈1, x〉
〈1, 1〉

· 1

= x−
∫ 1
0 1 · xdx∫ 1
0 1 · 1dx

· 1

= x−
x2/2

∣∣∣1
0

x
∣∣∣1
0

· 1

= x− 1/2

1
· 1

= x− 1

2
,

u3 = x2 − proj1(x
2)− projx− 1

2
(x2)

= x2 − 〈1, x
2〉

〈1, 1〉
· 1−

〈x− 1
2 , x

2〉
〈x− 1

2 , x−
1
2〉
· (x− 1

2
)
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= x2 −
∫ 1
0 1 · x2dx∫ 1
0 1 · 1dx

· 1−
∫ 1
0 (x− 1

2) · x2dx∫ 1
0 (x− 1

2)2 · 1dx
· (x− 1

2
)

= x2 −
x3/3

∣∣∣1
0

x
∣∣∣1
0

· 1−
x4/4− x3/6

∣∣∣1
0

x3/3− x2/2 + x/4
∣∣∣1
0

· (x− 1

2
)

= x2 − 1/3

1
· 1− 1/4− 1/6

1/3− 1/2 + 1/4
· (x− 1

2
)

= x2 − x +
1

6
.

Therefore, an orthogonal basis for U is {1, x− 1
2 , x

2−x+ 1
6}. Using this, we can calculate

the projection of ex onto U :

projU (ex) = proj1(e
x) + projx− 1

2
(ex) = projx2−x+ 1

6
(ex),

where

proj1(e
x) =

〈1, ex〉
〈1, 1〉

· 1

=

∫ 1
0 ex

1
· 1

= e− 1,

projx− 1
2
(ex) =

〈x− 1
2 , e

x〉
〈x− 1

2 , x−
1
2〉
· (x− 1

2
)

=

∫ 1
0 xex − ex/2dx∫ 1
0 (x− 1

2)2 · 1dx
· (x− 1

2
)

=
xex − ex − ex/2

∣∣∣1
0

x3/3− x2/2 + x/4
∣∣∣1
0

· (x− 1

2
)

=
3/2− e/2

1/12
(x− 12

)

= (3− e)(6x− 3), and

projx2−x+ 1
6
(ex) =

〈x2 − x + 1
6 , e

x〉
〈x2 − x + 1

6 , x
2 − x + 1

6〉
· (x2 − x +

1

6
)

=

∫ 1
0 x2ex − xex + ex/6dx∫ 1

0 x4 − 2x3 − 2
3x

2 − 1
3x + 1

36dx
· (x2 − x +

1

6
)
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=
x2ex − 2xex + 2ex − xex + ex + ex/6

∣∣∣1
0

1
5x

5 − 1
2x

4 − 2
9x

3 − 1
6x

2 + 1
36x
∣∣∣1
0

· (x2 − x +
1

6
)

=
7
6e−

13
6

1
5 −

1
2 −

2
9 −

1
6 + 1

36

· (x2 − x +
1

6
)

=
390− 210e

119
· (x2 − x +

1

6
).

and therefore, we have that the closest degree-2 polynomial to ex on the interval [0, 1] is

(390− 210e)

119
x2 +

(
(18− 3e)− (390− 210e)

119

)
x +

(
4e− 10− (390− 210e)

714

)
· 1.

Cool, right?

8


