Math 1b TA: Padraic Bartlett

Recitation 4: The Gram-Schmidt Process
Week 4 Caltech 2011

1 Random Question

Consider an infinite Z x Z grid of squares, finitely many of which are marked 1 (alive)and
the rest of which are marked 0 (dead). We “iterate” this grid of squares by implementing
the following three rules simultaneously:

e If a live cell has < 2 neighbors', it dies of loneliness.
e If a live cell has > 3 neighbors, it dies of overcrowding.

e If a dead cell has precisely 3 neighbors, it becomes alive.

Ten consecutive iterations of the rules described above.

Can you find some configuration of cells that, under the above rules, never stops chang-
ing? (i.e. in the example above, the system becomes completely empty after the next step.
Is this inevitable?)

2 HW comments

e Section average: 80%, or 64/80.

e There were a few, somewhat critical issues that cropped up a lot on this HW, which
I’d like to just briefly repeat here:

e In general, *always* state *why* you’re doing what you’re doing. If you’re using
a theorem, state it! If you're making a claim about matrices, tell us why it’s true!
On these HW'’s, the matrices you get at the end of your work are really the least
important parts of the problems; the methods you use to get there are what we really
care about.

!The neighbors of a cell are the 8 cells that surround it in our grid.



e Many matrices do not have inverses! In general, never assume that A~! exists for a
general matrix A.

e Also, matrix multiplication does not commute! In other words, there are many ma-
trices A, B such that AB # BA. Try to avoid accidentally assuming this!

e Similarly, remember how the transpose and inverse operations commute across mul-
tiplication: (AB)? = BT AT and (AB)™! = B~tA~L

e Remember your basic logic! If you are asked to prove an if and only if statement,
make sure you're proving *two* statements: the “if” part, and the “only if” part! See
me if you're confused; I have lectures I gave last quarter that should be helpful in
clearing this up.

e In general: please, please, if you're confused, contact me! I’'m usually up quite late
and at odd hours; if you have HW questions, I far prefer that you ask me than to
remain confused and not know what’s going on.

3 Gram-Schmidt: The Motivation

When we study vector spaces, we’ve often found that having a basis is a remarkably useful
thing. If we have a basis for a vector space, we really understand it a lot better than when
we don’t: they allow us to express *all* of the elements in the entire space as just some
sum of elements in the basis, which lets us characterize a very big thing (the vector space
itself) via some much smaller thing (its basis.)

However, some bases are more useful than others! Take, for example, the standard basis
for R™:

(0,0,0,. 1) =ey,
This basis has two remarkably useful properties:
e All of the elements in this basis have length 1, as \/m =v1=1.
e Any two distinct elements in this basis are orthogonal, as (e;, e;) = 0.

These two properties are remarkably useful! So useful, in fact, that we give such bases
a special name: any basis that has these two properties is called an orthonormal basis.
(A basis that has just the first property is called a normal basis; a basis that has just the
second property is called an orthogonal basis.)

So: suppose we have some finite-dimensional space V and a basis B for V. Is there a
way to turn B into one of these really nice orthonormal bases?

As it turns out: yes!



4 Gram-Schmidt: The Algorithm

To do this, we use the Gram-Schmidt process, which we describe here:

e As input, we take in a finite-dimensional space V and a basis B for V. As output, we
will create an orthogonal basis U for B, and then make an orthonormal basis F for
B using U.

e Suppose that B = {by,...b,}. We create n vectors uj, u,, and n vectors {e,...e,}
from the elements in B inductively, as follows:
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where the projection operator proj, (v) is defined as follows:

Projy(v) = u.

e U, the collection of the various w;’s, clearly has the same span as B, as you can write
any of the b;’s in terms of elements from U (by our above definitions.) As well, you
can prove by induction that for any u;, u; with ¢ # j, these two vectors are orthogonal:
to do this,

— start by showing that (uj,us) is 0,
— use this to show that (uj,us) is also 0, and

— inductively show that (uj,ug), for every k, and then

— use induction again! (i.e. you're doing a kind of “double-induction) to show that
(uj,ug) is 0 for any j # k. i.e. induct on j and then on k: the three steps above
have given you your base cases. See me if you'd like to see a full proof of this!

e Given this, we’re done — we’ve shown that U is an orthogonal basis for V', and thus
(because FE is just U with all of its vectors normalized to length 1) we know that E is
an orthonormal basis for V.



5 Gram-Schmidt: The Example

To illustrate how this goes, we study an example:

Example. Use Gram-Schmidt to turn the basis {(1,1,0),(1,0,1),(0,1,1)} for R? into an
orthonormal basis.

Proof. So: via the Gram-Schmidt algorithm, we define the vectors uj, us, usg as follows:
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These three vectors then form an orthogonal basis U for R3. To turn them into an
orthonormal basis, we divide them by their length:
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The vectors {ej, ez, e3} then form an orthonormal basis for R3, which is what we sought.

6 Gram-Schmidt: The Applications

Gram-Schmidt has a number of really useful applications: here are two quick and elegant
results.

Proposition 1 Suppose that V' is a finite-dimensional vector space with basis {by ...b,},
and {u, ... u,} is the orthogonal (not orthonormal!) basis that the Gram-Schmidt process
creates from the b;’s.

Let U denote the matriz with rows given by the vectors {w,...u,}, and let B denote

the matriz with rows given by the matriz {by,...b,}. Then, we have that
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Proof. Just solve the equations given by the Gram-Schmidt process for the b; entries: this
tells you which combinations of the U rows will yield an element of B.

The above result may not look too interesting now, but when we get to eigenvalues and
change-of-basis matrices, it will come in handy.
Another nice result, whose utility is much more obvious, is the following:

Proposition 2 ForV a vector space, U a finite-dimensional subspace of V, B = {b; ... b,}
an orthogonal basis for U, and any vector © in V, we define the orthogonal projection
of © onto U as the following vector in U:

n
projy(x) = Z Proj, (x).
i=1

This vector is the closest vector in U to x.



We reserve the proof of this statement for class, and instead focus on an example of its
use:

Example. Let V = C]0, 1], the space of all continuous functions on the interval [0,1]; as
the sum of any two continuous functions is again a continuous function, and scalar multiples
of continuous functions is still continuous, this is clearly a vector space. Let U denote all of
the polynomials with real coefficients and degree < 2; this is clearly a subspace of V', with
basis {1, z, 22}.

What is the closest element in U to the element e* in V7

Proof. So: first, recall that the inner-product on the space of all real-valued continuous
functions from 0 to 1 is defined as the following:

1
(f,9) :/0 f(x)g(x)dz.

We seek to find the closest degree < 2-polynomial to e with respect to this idea of
distance: in other words, we're trying to find a polynomial that stays close to e* on *all*
of [0,1]. (This contrasts nicely with Taylor series, which only try to approximate a given
function at a single point.)

To do this, we need to do just two things:

1. Find an orthogonal basis for U, and
2. Use this to find the orthogonal projection of e* onto U.

To do the first, we apply the Gram-Schmidt process to the basis {1,z, 2}
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uz = x — proj; (x)
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Therefore, an orthogonal basis for U is {1,z — La?—x+ %} Using this, we can calculate

29
the projection of e* onto U:

projy(¢*) = projy (¢*) + proj,_1(e*) = proj,2_, 1(¢%),
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and therefore, we have that the closest degree-2 polynomial to e” on the interval [0, 1] is
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Cool, right?



