Math 1b TA: Padraic Bartlett

Recitation 4: The Gram-Schmidt Process
Week 4 Caltech 2011

1 Random Question

Consider an infinite Z x Z grid of squares, finitely many of which are marked 1 (alive)and
the rest of which are marked 0 (dead). We “iterate” this grid of squares by implementing
the following three rules simultaneously:

e If a live cell has < 2 neighbors', it dies of loneliness.
e If a live cell has > 3 neighbors, it dies of overcrowding.

e If a dead cell has precisely 3 neighbors, it becomes alive.

Ten consecutive iterations of the rules described above.

Can you find some configuration of cells that, under the above rules, never stops chang-
ing? (i.e. in the example above, the system becomes completely empty after the next step.
Is this inevitable?)

2 HW comments

e Section average: 80%, or 64/80.

e There were a few, somewhat critical issues that cropped up a lot on this HW, which
I’d like to just briefly repeat here:

e In general, *always* state *why* you’re doing what you’re doing. If you’re using
a theorem, state it! If you're making a claim about matrices, tell us why it’s true!
On these HW'’s, the matrices you get at the end of your work are really the least
important parts of the problems; the methods you use to get there are what we really
care about.

!The neighbors of a cell are the 8 cells that surround it in our grid.

e Many matrices do not have inverses! In general, never assume that A~! exists for a
general matrix A.

e Also, matrix multiplication does not commute! In other words, there are many ma-
trices A, B such that AB # BA. Try to avoid accidentally assuming this!

e Similarly, remember how the transpose and inverse operations commute across mul-
tiplication: (AB)? = BT AT and (AB)™! = B~tA~L

e Remember your basic logic! If you are asked to prove an if and only if statement,
make sure you're proving *two* statements: the “if” part, and the “only if” part! See
me if you're confused; I have lectures I gave last quarter that should be helpful in
clearing this up.

e In general: please, please, if you're confused, contact me! I’'m usually up quite late
and at odd hours; if you have HW questions, I far prefer that you ask me than to
remain confused and not know what’s going on.

3 Gram-Schmidt: The Motivation

When we study vector spaces, we’ve often found that having a basis is a remarkably useful
thing. If we have a basis for a vector space, we really understand it a lot better than when
we don’t: they allow us to express *all* of the elements in the entire space as just some
sum of elements in the basis, which lets us characterize a very big thing (the vector space
itself) via some much smaller thing (its basis.)

However, some bases are more useful than others! Take, for example, the standard basis
for R™:

(0,0,0,. 1) =ey,
This basis has two remarkably useful properties:
e All of the elements in this basis have length 1, as \/m =v1=1.
e Any two distinct elements in this basis are orthogonal, as (e;, e;) = 0.

These two properties are remarkably useful! So useful, in fact, that we give such bases
a special name: any basis that has these two properties is called an orthonormal basis.
(A basis that has just the first property is called a normal basis; a basis that has just the
second property is called an orthogonal basis.)

So: suppose we have some finite-dimensional space V and a basis B for V. Is there a
way to turn B into one of these really nice orthonormal bases?

As it turns out: yes!

4 Gram-Schmidt: The Algorithm

To do this, we use the Gram-Schmidt process, which we describe here:

e As input, we take in a finite-dimensional space V and a basis B for V. As output, we
will create an orthogonal basis U for B, and then make an orthonormal basis F for
B using U.

e Suppose that B = {by,...b,}. We create n vectors uj, u,, and n vectors {e,...e,}
from the elements in B inductively, as follows:

u;

u; = by, e = Tl
. uz

uy = by — proj,, (bz), ey = m
. . us

uz = b3 — proj,, (b3) — proj,, (b3), e3 = Tasl
n—1 u

uTL — bn - Zprojuj (bn)7 en = HTTLH’
=1 "

where the projection operator proj, (v) is defined as follows:

Projy(v) = u.

e U, the collection of the various w;’s, clearly has the same span as B, as you can write
any of the b;’s in terms of elements from U (by our above definitions.) As well, you
can prove by induction that for any u;, u; with ¢ # j, these two vectors are orthogonal:
to do this,

— start by showing that (uj,us) is 0,
— use this to show that (uj,us) is also 0, and

— inductively show that (uj,ug), for every k, and then

— use induction again! (i.e. you're doing a kind of “double-induction) to show that
(uj,ug) is 0 for any j # k. i.e. induct on j and then on k: the three steps above
have given you your base cases. See me if you'd like to see a full proof of this!

e Given this, we’re done — we’ve shown that U is an orthogonal basis for V', and thus
(because FE is just U with all of its vectors normalized to length 1) we know that E is
an orthonormal basis for V.

5 Gram-Schmidt: The Example

To illustrate how this goes, we study an example:

Example. Use Gram-Schmidt to turn the basis {(1,1,0),(1,0,1),(0,1,1)} for R? into an
orthonormal basis.

Proof. So: via the Gram-Schmidt algorithm, we define the vectors uj, us, usg as follows:

u1:(1,1,0),
1,0,1) — proj(11,0y ((1,0,1))
((1,1,0),(1,0,1))
(1,0,1) ((1,1,0), (1,1,0)) +(1,1,0)
=(1,0,1) — 5 (1.1,0)
1 1
2’ 2’0)
uz = (0,1,1) - pl"OJ(l 1,0) ((0,0,1)) - proj(%7_%70) ((0,1,1))
_ ((1,1,0),(0,1,1)) ((3,-%,0),00,1,1)) (1 1
~OL =T anoy YO T o). G Loy '(2"2’0>
=(0,1,1) — = - (1,1,0) — ;ﬁ <;,—;,0>

2
10~ (339)~ (575'3)
b ’6’3
222
—'<‘373’3>'

These three vectors then form an orthogonal basis U for R3. To turn them into an
orthonormal basis, we divide them by their length:
up
[|

- ! (1,1,0)
VAL, Loy

1
= E(L 170)7

uz

]

e =

€2

The vectors {ej, ez, e3} then form an orthonormal basis for R3, which is what we sought.

6 Gram-Schmidt: The Applications

Gram-Schmidt has a number of really useful applications: here are two quick and elegant
results.

Proposition 1 Suppose that V' is a finite-dimensional vector space with basis {by ...b,},
and {u, ... u,} is the orthogonal (not orthonormal!) basis that the Gram-Schmidt process
creates from the b;’s.

Let U denote the matriz with rows given by the vectors {w,...u,}, and let B denote

the matriz with rows given by the matriz {by,...b,}. Then, we have that
[1 0 0 0 07
(b2,w1)
%hulg " 1 > 0 0 0
3,U1 3,U2
) 1 0 0
B= bs,u1 bs,uz) (ba,us) 1 o |- U

(ui,ur) (u2,u2) (us,ug)

(bnow) (buz) (buus) (Buouw))
L (up,uq) <’u,2,u2> (u3,u3) <’U,4,’U,4> i

Proof. Just solve the equations given by the Gram-Schmidt process for the b; entries: this
tells you which combinations of the U rows will yield an element of B.

The above result may not look too interesting now, but when we get to eigenvalues and
change-of-basis matrices, it will come in handy.
Another nice result, whose utility is much more obvious, is the following:

Proposition 2 ForV a vector space, U a finite-dimensional subspace of V, B = {b; ... b,}
an orthogonal basis for U, and any vector © in V, we define the orthogonal projection
of © onto U as the following vector in U:

n
projy(x) = Z Proj, (x).
i=1

This vector is the closest vector in U to x.

We reserve the proof of this statement for class, and instead focus on an example of its
use:

Example. Let V = C]0, 1], the space of all continuous functions on the interval [0,1]; as
the sum of any two continuous functions is again a continuous function, and scalar multiples
of continuous functions is still continuous, this is clearly a vector space. Let U denote all of
the polynomials with real coefficients and degree < 2; this is clearly a subspace of V', with
basis {1, z, 22}.

What is the closest element in U to the element e* in V7

Proof. So: first, recall that the inner-product on the space of all real-valued continuous
functions from 0 to 1 is defined as the following:

1
(f,9) :/0 f(x)g(x)dz.

We seek to find the closest degree < 2-polynomial to e with respect to this idea of
distance: in other words, we're trying to find a polynomial that stays close to e* on *all*
of [0,1]. (This contrasts nicely with Taylor series, which only try to approximate a given
function at a single point.)

To do this, we need to do just two things:

1. Find an orthogonal basis for U, and
2. Use this to find the orthogonal projection of e* onto U.

To do the first, we apply the Gram-Schmidt process to the basis {1,z, 2}

u; = 1,
uz = x — proj; (x)
1
)
(1,1)
B foll-xdx
Jy1-lde
x2/2’
_ 0
T — T -1
g
0
1/2
—r— 121
1
1
= r— —
27
uz = 2° — proj, (z°) — proj, 1 (z)
::IZ2—<1’1:2>-1— (x—%,x2> (_1)
(1,1) (z—L12-13) 2

) foll-anda: . fol(m—%)-ﬁdm 1

B foll-ldm fol(w—%)Q-ldx'(x_i)
=% — xg/?‘; 11— i $3/6‘; (T -)

.’L“O x3/3—$2/2+w/4‘0 2
=2’ - 1{3 1= 1/31141;21161/4 (@ %)
:xz—x+6.

Therefore, an orthogonal basis for U is {1,z — La?—x+ %} Using this, we can calculate

29
the projection of e* onto U:

projy(¢*) = projy (¢*) + proj,_1(e*) = proj,2_, 1(¢%),

where
ooy (LeY)
1z
_ fO € 1
1
=e—1,
) oz 3. €%) 1
prOJr,%(e) (x — %,x_ %> (5)
fola;e“—e”’/2dw (1)
= . x_i
fol(x — 12 1ldx 2
1
xex—ex—ex/2)0 1
- 1 ‘(l'— 5)
33‘3/3—132/24-1'/4‘0
B 3/2—6/2(12
Tz YT

= (3 —¢€)(6x — 3), and

. <x2—x+l,ex>
prO‘]x27m+%(e$): 6 (x2_x+7)

(2 —z+§,22—a+) 6
1 2 o T T
xee® — ze® + e /6dx 1
= 2 1/ 1 (@ -t)
Jo ot =223 — 522 — S 4 pda 6

3

1
x2ex—2xex+2ex—xex+ex+ef”/6‘0) 1

= 1 (33' —flf‘i‘g)
ém5—%x4—%$3—%m2+%x‘
7 13

_ 8¢~ % -zl

1 1 2 1 1

5—3- 5613 6
390 — 210e (x2_x+1)
N 119 67

and therefore, we have that the closest degree-2 polynomial to e” on the interval [0, 1] is

(390 — 210¢) (390 — 210¢) (390 — 210¢)
e 18 — 3e¢) — 22— =200 de — 10— 22 2200
119 x“+ | (18 — 3e) 119 x4+ (4e —10 =

Cool, right?

