
Math 1b TA: Padraic Bartlett

Recitation 5: Elementary Matrices

Week 5 Caltech 2011

1 Random Question

Consider the following two-player game, called Angels and Devils:

• Our game is played on a n×n chessboard, with one token (the “angel”) placed at the
center of the board.

• Our two players – the “angel” and the “devil” alternate taking turns.

• On the angel’s turn, they can move their token to any adjacent square.

• On the devil’s turn, they can pick any one square on the board not occupied by the
angel and remove it from play; for the rest of the game, the angel can never enter that
square.

• The angel wins if it can get to the perimeter of the board (as it can presumably then
walk off the board.) The devil wins if it can trap the angel; i.e make it so the angel
has no possible moves from its current position.

Assuming perfect play, who wins this game on a given n× n board? Does it depend on n?

2 HW comments

• Section average: 92%.

• People did remarkably well! In particular, there was a remarkably small amount of
deviation from the in-class average of 92%; almost everyone displayed a nice command
of the material on this set. Specifically, people did the following things much better
than on sets past:

– People explained why they did things! That was excellent.

– People wrote far clearer proofs, and really paid attention to basic logical things,
like how to prove “if and only if” statements. That was also excellent.

• Also, as an aside: always attach mathematica or wolfram alpha or what-have-you
work if you use it. We need this to figure out what you’re doing! Most of you are
doing this, but some aren’t, so I’ll keep saying this until it’s not an issue.
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3 Elementary Matrices

Today’s recitation is much shorter than previous recitations, because (1) I’ve been giving
the Ma1b lectures, and so I’m really not sure what topics I missed (if I knew, then I wouldn’t
have missed them in lecture...) and (2) you have a midterm, and probably would prefer to
talk about older material rather than newer material.

So, we did two things in this talk:

1. Discussed elementary matrices in depth: we recalled their definitions, proved that each
elementary matrix corresponds to performing some given row operation on a matrix
(and furthermore that for any such row operation, there is an elementary matrix that
performs that operation), and showed how to decompose a matrix into elementary
matrices.

2. Discussed various review topics, as determined by the class. As this was mostly off-
the-cuff, I don’t have notes for this; I think everything’s contained in my previous
recitations, but if you have any specific questions feel free to email me! I’ll be around
for all of Friday night, Saturday night, and also Sunday night (where there will be
office hours at 10, should anyone still have questions and not be taking the midterm
yet...)

In class on Wednesday, we defined elementary matrices. We restate their definition
here, for convenience:

Definition. There are three different kinds of elementary matrices, corresponding to
the three different types of row operations. We list them here:

Emultiply row k by λ =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 λ 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, i)-th spot, multiplying A on the left by this matrix multiplies A’s i-th

row by λ.
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The matrix above is the standard identity matrix with its i-th and j-th columns
(highlighted) switched. Multiplying A on the left by this matrix switches A’s i-th and j-th

rows.

Eadd λ·row j to row i =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 λ 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, j)-th spot, multiplying A on the left by this matrix adds λ times row j

of A to row i of A.

In class, we claimed that these matrices “did what they said.” In other words:

Theorem 1 If we took any n × n matrix A, and multiply it on the left by some n × n
elementary matrix E,

• if E = Emultiply row k by λ, then EA would be the matrix A with its k-th row multipled
by λ.

• if E = Eswap rows i and j, then EA would be the matrix A with its i-th and j-th rows
swapped, and

• if E = Eadd λ·row j to row i, then EA would be the matrix A with λ times its j-th row
added to its i-th row.

We prove this claim below: it’s not necessarily very interesting, so feel free to skip this if
you prefer.

Proof. To prove these claims, we simply perform matrix multiplication.
To start, take any n× n matrix A, row k and constant λ, and examine the product

Emultiply row k by λ ·A =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 λ 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 1


·



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

What do entries in the resulting matrix look like? Well, there are two cases:
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• in the location (i, j), for any i 6= k and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj)T = aij ,

because the 1 in the i-th row of E is in the i-th place.

• in the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , λ, . . . 0) · (a1j , . . . anj)T = λkj ,

because the λ in the k-th row of E is in the k-th place.

By inspection, this matrix is A with its k-th row multipled by λ: so this elementary matrix
works as claimed.

The proofs for the other two elementary matrices are similar. For the matrix Eswap rows k and l,
we again examine the product EA:

Again, what do entries in the resulting matrix look like? In this situation, there are three
cases:

• In the location (i, j), for any i 6= k, l and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj)T = aij ,

because the 1 in the i-th row of E is in the i-th place.

• In the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj)T = alj ,

because the 1 in the k-th row of E is in the l-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s l-th row and A’s j-th column: i.e.

entry (l, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj)T = akj ,

because the 1 in the l-th row of E is in the k-th place.
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By inspection, this matrix is A with its k-th and l-th rows swapped, as claimed.
Finally, we turn to Eadd λ·row k to row l, and once more look at EA:

Eadd λ·row k to row l ·A =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 λ 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


·



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

Again, what do entries in the resulting matrix look like? In this situation, there are just
two last cases:

• In the location (i, j), for any i 6= l and any j, we know that the entry there is just the
dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj)T = aij ,

because the 1 in the i-th row of E is in the i-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 0, λ, 0, . . . , 0, 1, 0, . . . 0) · (a1j , . . . anj)T = λakj + alj ,

because the λ in the l-th row of E is in the k-th place, and the 1 is in the l-th place.

By inspection, this matrix is A with λ times its k-th row added to its l-th row, as claimed.

So, they work! In other words, we can perform any row operation r on a matrix A
by multiplying A on the left by some elementary matrix Er. In class we made a rather
remarkable claim based on this observation:

Theorem 2 If A is a nonsingular matrix, we can find elementary matrices E1, . . . Ek such
that A = E1 · . . . · Ek.

Proof. Well, we know that if A is nonsingular, we can perform some series of row operations
rn, . . . r1 to A such that rn · . . . r1 ·A = I, the identity matrix.

What does this mean? Well, suppose that we “undo” these row operations on I: i.e.
suppose we start with I, and then perform the row operation r−1

n that undoes the row
operation rn. (I.e. if rn was multiplying the second row by 4, r−1

n is dividing the second
row by 4.) If we undo all of these in reverse order, we’d then have that

A = r−1
1 · . . . · r

−1
n · I.

So, simply take Ei to be the elementary matrix corresponding to r−1
i ! Then, we have that

A = E1 · . . . · En · I,

as claimed.
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The cool thing about the proof above is that it actually gives us a concrete algorithm
that will decompose any nonsingular matrix into elementary matrices! The following is an
example of this:

Example. Decompose the matrix

A =

 1 2 3
2 5 6
4 8 9


into elementary matrices.

Proof. So, we first find a sequence of row operations to transform A into the 3×3 identity
matrix:  1 2 3

2 5 6
4 8 9

 =(add -2r1 to r2)

 1 2 3
0 1 0
4 8 9


→(add -4r1 to r3)

 1 2 3
0 1 0
0 0 −3


→(add -2r2 to r1)

 1 0 3
0 1 0
0 0 −3


→(add r3 to r1)

 1 0 0
0 1 0
0 0 −3


→(multiply r3 by -1/3)

 1 0 0
0 1 0
0 0 1

 .

Now, according to our theorem, we can recreate A by undoing all of these row operations
on I, starting from the last and working our way backwards: i.e.

A = (add -2r1 to r2)−1 ◦ (add -4r1 to r3)−1 ◦ (add -2r2 to r1)−1 ◦ (add r3 to r1)−1 ◦ (mult. r3 by -1/3)−1 ◦ I
= (add 2r1 to r2) ◦ (add 4r1 to r3) ◦ (add 2r2 to r1) ◦ (add (-1)r3 to r1) ◦ (mult. r3 by -3) ◦ I

=

 1 0 0
2 1 0
0 0 1

 ·
 1 0 0

0 1 0
4 0 1

 ·
 1 2 0

0 1 0
0 0 1

 ·
 1 0 −1

0 1 0
0 0 1

 ·
 1 0 0

0 1 0
0 0 −3

 .

So we’re done!
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