FINAL REVIEW! - SELECTED EXERCISES

TA: PADRAIC BARTLETT

1. EXAM PROPERTIES

So: the final will cover chapters 5-8 with the exceptions of sections 6.4,7.7,8.5,8.6
— i.e. the material covered in the fifth through eighth homeworks. Basically, what
you need to know is

e Chapter 5 — how to do basic integration; Fubini’s theorem.

e Chapter 6 — Change of Variables formula — the general form for 2 and 3
dimensions, as well as the explicit transformations for polar, cylindrical and
spherical cotrdinates; also, how to use integrals to calculate average values
and centers of mass.

e Chapter 7 — different ways of taking integrals; i.e. how to integrate functions
and vector fields over curves and surfaces.

e Chapter 8 — Green’s theorem, the divergence theorem, Stokes’s theorem,
and Gauss’s theorem.

Explicit lists of definitions/theorems and their properties can be found in the earlier
notes here.

So: we work a series of examples below, to illustrate the theory we’ve learned so
far.

2. AREA OF A FisH

Question 2.1. Find the area bounded by the “fish curve” parametrized by

c(t) = (cos(t)

B sin?(t)

V2

,cos(t) sin(t)).

Proof. So: recall the formula for area that’s given by Green’s theorem: i.e. for D a
region bounded by the simple closed curve ¢ oriented positively (i.e. so that the
1
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region D is on the LHS of the curve), we have

1
A(S) = 3 /+ xdy — ydx.

So, we can’t apply this directly to ¢, as this curve is not a simple closed curve!
Indeed, ¢(m/2) = ¢(37/2). However, what we can do is use this formula to find the
area of the “head” and the “tail,” and simply sum these two areas together.

So: the head is parametrized positively by the curve ¢ on the interval [—7 /2, 7/2],
and the tail is parametrized negatively by the curve c on the interval [r/2,3m/2];
you can see this by drawing the curve ¢ from 0 to 27 and drawing little arrows to
show you which direction you're going.

As a result, we have that the area of the head is just

w/2
1 / (c1(t)ch(t) — ca(t)cy (t))dt

2 —m/2
and of the tail is
1 3n/2
5/, @O0 a0hom
(where the minus sign comes from the reversed orientation of the tail.)
So: we calculate!

[ @0d - anaoa
:% / b (cos(t) - Sirjé”) (cos?(t) — sin(t)) — (cos(t) sin(t)) (—sin(t) - zsm(t)\/;os(t)
_ % /ab cos™(t) 1 sirjét) ~ sin® C(\)/s;(t)(t) N 2sin2(3§cos2(t) it
:% /a b cos®(t) + Sirjg) dt
_ % /ab 3 cos(t) 4—cos(3t) L1 —;\(}sﬁ(%) it
:é <?>sin(t) - @ +tV2 - S’H\lg)) b

Evaluating this at a = —7/2,b = 7/2 gives that the area of the head is 2/3+7/2/8;
evaluating at a = 7/2,b = 37/2 yields that the area of the tail is —2/3 4+ 11/2/8;
combining yields that the entire area is mv/2/4. O

3. VECTOR FIELDS OVER A LISSAJOUS CURVE
Question 3.1. For F' the vector field defined by
F(z,y,2) = (2*y°,2°)
and c(t) the Lissajous curve parametrized by
c(t) = (sin(3t + m/4),sin(t)),
find [ Fds.

) i
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Proof. So, if we merely directly calculate, we have that
2m
/ Fds = / (sin2(3 + 7/4), sin2(1), 0) - (3 cos(3t + 7/4), cos(t), 0)
C 0

2m
= / 3cos(3t + m/4) sin?(3t + 7w/4) 4 cos(t) sin®(t)dt
0

2m 2m
= / 3cos(3t + w/4) sin?(3t + 7/4)dt + / cos(t) sin®(t)dt
0 0

1/V2 0
:/ uzdu—i—/ v2dv =0,
1/V2 0

where the substitutions in the last step were u = sin' 3¢ + 7/4) and v = sin(t).
Conversely, you could just notive that F' is given by the gradient of the function

flz,y,2) = M, and thus that

/c,Fds://Vx(Vf)ds://O:O

for any simple closed curve ¢’ (as the curl of a gradient is always 0). Breaking up
our Lissajous curve into three simple closed curves then gives that the integral of
F over cis 0, as expected. ([l

4. INTEGRAL TRICKS - 1

Question 4.1. Calculate

// x? +y?z — 23 /3dxdydz,
s

where S is the unit sphere.
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Proof. So, we can directly calculate this with the spherical coérdinate transforma-

tion (6, @) — (sin(¢) cos(6), sin(¢) sin(h), cos(¢))

// x? + Pz — 23 /3dxdydz =

/zﬂ/ cos?(0) sin®(¢) cos? () + sin?(0) sin® () cos(¢) —

[ / cos?(0) (3“4“(3“) s+ [ @) (0)eostorio — [ 45) ag

27 4

:/ cos?(0) - = +0+0
0 3

4

—.

3

cos3(¢;s1n(¢) d6d6

Alternately, you can notice that

2
// 2? +y?z — 2°/3dadydz = //(m,yz, —%) (z,y, 2)dzxdydz;
S S

because the unit normal vector on the sphere is n(x,y, z) = (z,y, 2), we know that

this is actually
/ / x,yz, ——) - ndxdydz

and thus that we can apply Gauss’s theorem to get

//xyz ndmdydz—///1+z—zdxdydz—///ds—f

the volume of the unit ball. O

5. INTEGRAL TRICKS — II

//5(22,0,21/) -dS

Question 5.1. Calculate

where S is the unit sphere.
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Proof. So, we can, again, directly calculate this with the spherical co6rdinate trans-
formation (0, ¢) — (sin(¢) cos(8), sin(¢) sin(6), cos(¢))

//(QZ,O,Qy)dxdydzz
S

2 ™
:/0 /0 (2cos(9),0,2sin(¢) sin(8)) - (— sin?(¢) cos(8), sin?(¢) cos(), — sin(¢p) cos(8))dpdo

:/0 (/07r —2cos(h) - cos(¢) sin?(¢)de — /07r 25sin?(¢) sin(#) cos(ﬁ)dqﬁ) do

= /O Qﬂ ( / ’ —2cos(h) - uldu — / ! sin?(¢) sin(29)d¢) de

0 0
2m s
= - / sin?(¢) sin(26)dpdo
0 0

™ 27

:—/ / sin?(¢) sin(26)dfd¢
o Jo

:0’

by using various trig identities, the substitution u = sin(¢), and the fact that sin(26)
has integral 0 over [0, 27r]. Alternately, you can notice that

//(22,0,2y)dxdydz://V>< (y?, 22, 0)dzdydz;
s s

applying Gauss’s theorem then yields

// V x (v, 2%,0)dzdydz = /// div(V x (y*,22,0))dwdydz = 0
S B

because the divergence of a curl is always 0.
Finally, you could instead just use use Stokes’s theorem, which says also that

// V x (y?, 2%, 0)dzdydz = / (y?, 2%,0)dxdydz = 0
s as

because the unit sphere has no boundary. (I
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