
Math 1c TA: Padraic Bartlett

Recitation 2: The Derivative

Week 2 Caltech 2011

1 Random Question

Is it possible to find a collection of open balls {Bxi(ri)}
∞
i=1 in Rn such that

•
⋃∞

i=1Bxi(ri) ⊇ Qn, and

•
∑∞

i=1 volume (Bxi(ri)) < 1 ?

2 The Derivative

2.1 The directional derivative: definitions, theorems, examples.

This lecture is centered around defining the idea of the derivative in Rn. There are a
number of possible ways to do this! One way is to generalize the idea of “slope” from R1.

In other words: in R1, the derivative of a function f : R → R at some point a is the
“slope” of the graph f(x) = y at the point (a, f(a)). Analogously, we could define the
directional derivative of a function f : Rn → R at some point a, along some direction v,
as the “slope” of f at the point a, as measured in the direction v. More formally:

Definition. The directional derivative of a function f : Rn → R at some point a along
some direction v is the limit

f ′(a; v) := lim
h→0

f(a + h · v)− f(a)

h · ||v||
.

To illustrate what’s going on here, consider the following example:

Question 1 Consider the function f(x, y) = −
√
x2 + y2. What is the directional derivative

of this function at the point (0,−1) in the direction (0, 1)?

Solution. First, to get a good idea of what’s going on in this problem, we graph our
function:
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Visually, if we look at the point (0,−1) and its slope in the direction (0, 1), we can see
that it should be 1, just by examination. So, let’s calculate, and see if our visual intuition
matches our mathematical definition:

lim
h→0

f((0,−1) + h · (0, 1))− f((0,−1))

h
= lim

h→0

f((0, h− 1))− f((0,−1))

h · ||(0, 1)||

= lim
h→0

(−
√

02 + (h− 1)2)− (−
√

02 + (−1)2)

h · 1

= lim
h→0

−|h− 1|+ 1

h

= lim
h→0

h

h

= 1,

because for very small values of h, −|h− 1| = h− 1. So this matches our intuition!

Some of the most commonly-occuring directional derivatives are the partial deriva-
tives, which we define below:

Definition. The partial derivative ∂f
∂xi

of a function f : Rn → R along its i-th coördinate
at some point a is just the directional derivative f ′(a; ei): in other words, the limit

lim
h→0

f(a + h · ei)− f(a)

h
.

Equivalently, it is just the derivative of f if we “hold all of f ’s other variables constant”
– i.e. if we think of f as a single-variable function with variable xi, and treat all of the other
xj ’s as constants. This method is markedly easier to work with, and is how we actually,
say, *calculate* partial derivatives.
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So: as it turns out, knowing these partial derivatives tells us exactly how to find *any*
directional derivative! In particular, we have the following theorem:

Theorem 2 The directional derivative of a function f : Rn → R at some point a along
some direction v is given by the dot product of the gradient of f at a,

∇f
∣∣∣
a

:=

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
with v/||v||. In other words,

f ′(a; v) :=∇f
∣∣∣
a
· v

||v||

To illustrate the use of this theorem, return to our cone problem from earlier. There,
we had f(x, y) = −

√
x2 + y2; thus, if we hold y constant, we can see that

∂f

∂x
= − 2x

2
√
x2 + y2

=
−x√
x2 + y2

.

Similarly, by holding y constant, we have

∂f

∂y
=

−y√
x2 + y2

.

Therefore, we know that the directional derivative of f at (0,−1) in the direction (0, 1)
is given by(

∂f

∂x
(0,−1),

∂f

∂y
(0,−1)

)
· (0, 1) =

(
−(0)√

02 + (−1)2
,
−(−1)√

02 + (−1)2

)
· (0, 1)

= (0, 1) · (0, 1)

= 1,

which matches our earlier answer.

2.2 The total derivative: definitions, theorems

So: as it turns out, the above notion is not the only way we have of thinking about deriva-
tives! In addition to the geometric notion of “slope” in a given direction, we also had the
more algebraic notion of a derivative being a “linear approximation” of a function in a given
direction.

Specifically, for R1, the derivative f ′(a) was a constant such that the function f(a) +
xf ′(a) was “very close” to f(x) near a: i.e. it was a constant chosen such that the limit

lim
h→0

f(a + h)− f(a)− f ′(a) · h
h

= 0.
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(i.e. in the above limit, subtracting f(a)+f ′(a) ·h took away the “linear” part of f , leaving
it with only (if f had a Taylor series

∑
cix

i) terms that are quadratic or higher-order.)
Analogously, for f : Rn → R, we can ask that the derivative be something similar!

Specifically, consider the following definition:

Definition. The function f : Rn → R has a total derivative Ta at some point a if
f(a) + Ta · (x) is a “linear approximation” of f at a: i.e. if the limit

lim
||h||→0

f(a + h)− f(a)− Ta · h
||h||

= 0.

While this definition of the derivative has the advantage that it captures this idea of a
“linear approximation” in a way that the directional derivative doesn’t obviously do, it has
the downside that it seems impossible to calculate! How can we find such a thing?

Well, as it turns out, with the directional derivative! In particular, we have the following
theorem:

Theorem 3 If f : Rn → R has a total derivative at the point a, then this total derivative
is simply the gradient of f at a: i.e.

Ta =

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

A quick consequence of the above theorem is that if f has a total derivative at some
point a, it has all of its directional derivatives at that point a. A question we could then
ask is the following: does the converse hold? In other words, if a function f has all of its
partial derivatives at some point, does it have a total derivative at that point?

As it turns out: no! Consider the following example:

Example. The function

f(x, y) =

{
y3

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

has partial derivatives ∂f
∂x ,

∂f
∂y defined on all of R2, and yet has no total derivative at (0, 0).

Solution. To find f ’s partial derivatives, we simply calculate and break things apart into
cases. Specifically, for ∂f

∂x , there are two possible situations we can find ourself in: either
y 6= 0, or y = 0. In the first case, we have (by differentiating)

∂f

∂x
=
−2xy3

(x2 + y2)2
.

In the second, because y = 0 ⇒ f(x, y) = 0, it doesn’t matter whether we’re looking at
∂f
∂x (x, 0) with x 6= 0, or ∂f

∂x (0, 0); in either case

∂f

∂x
= 0.
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(Normally, we’d have to worry about (0, 0 as a special case, because our function is
piece-wise defined; it’s possible for the derivative to do something weird at the origin as
a result of this. See the last example problem in this recitation for a situation where this
happens!)

Similarly, for ∂f
∂y , we have that whenever x 6= 0, we have (by differentiating)

∂f

∂y
=

3y2

x2 + y2
− 2y4

(x2 + y2)2

and whenever x = 0, we have (as f(0, y) = y3

y2
= y for y 6= 0, and f(0, 0) = 0 = y for y = 0)

∂f

∂y
= 1.

So: we know that if our function *did* have a total derivative at (0, 0), it would be

given by the partials – i.e. that T(0,0), if it exists, must be

(
∂f
∂x

∣∣∣
(0,0)

, ∂f∂y

∣∣∣
(0,0)

)
= (0, 1).

However, when we examine the limit

lim
||(h1,h2)||→0

f((0, 0) + (h1, h2))− f(0, 0)− T(0,0) · (h1, h2)
||(h1, h2)||

= lim
||(h1,h2)||→0

h3
2

h2
1+h2

2
− 0− (0, 1) · (h1, h2)

||(h1, h2)||

= lim
||(h1,h2)||→0

h3
2

||(h1,h2)||2 − h2

||(h1, h2)||

= lim
||(h1,h2)||→0

h2(h
2
2 − ||(h1, h2)||2)
||(h1, h2)||3

,

we can see that along the line h1 = h2, we have

lim
||(h1,h2)||→0

h2(h
2
2 − ||(h1, h2)||2)
||(h1, h2)||3

= lim
h2→0

h2(h
2
2 − (

√
h22 + h22)

2)

(
√
h22 + h22)

3

= lim
h2→0

h2(h
2
2 − 2h22)

(
√

2h22)
3

= lim
h2→0

−h32
(
√

2)3 · |h2|3

= lim
h2→0

−h2/|h2|
2
√

2
,

which clearly doesn’t have a limit (and definitely doesn’t converge to 0!) as h2 → 0. So our
function is not totally differentiable at (0, 0).
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What went wrong above? Well, while our function *did* have all of its partial deriva-
tives, they weren’t exactly the nicest partial derivatives you could hope for. In other words,
if you look at ∂f

∂x : on any values along the line x = y where x 6= 0 we have

∂f

∂x
=
−2x · x3

(x2 + x2)2
=
−2x4

4x4
= −1

2
.

However when x = y = 0, we have ∂f
∂x (0, 0) = 0! So, this partial is not a continuous

function on all of R2. As a result, its behavior at (0, 0) – which we use to define T(0,0) –
doesn’t accurately represent its behavior *near* (0,0), which is why T(0,0) failed to be a
good linear approximation to f near (0, 0).

As it turns out, this is the *only* way in which we can have partials and yet not have
a total derivative! Formally, we have the following theorem:

Theorem 4 For a function f : Rn → R, if all of f ’s partials exist in a neighborhood of a
and are continuous at the point a, then f has a total derivative at a.

The last question we ask in our recitation, then, is whether continuity of the partials is
*necessary* for a function to have a total derivative. In other words: suppose we have a
function f : Rn → R has all of its partials defined at some point a, but some of them are
discontinuous at a. Can f still somehow have a total derivative at a?

The answer, as we discuss with our last example, is yes!

Example. The function

f(x, y) =

{
x2y2 · sin

(
1
xy

)
, x 6= 0 and y 6= 0,

0, otherwise,

has ∂f
∂x discontinuous at every point of the form (0, y) where y 6= 0, ∂f

∂y discontinuous at
every point of the form (x, 0) where x 6= 0, and yet has a total derivative everywhere.

Solution. As an aside, note that this function is a generalization of the map x 7→ x2 sin(1/x),
which (from back in Ma1a / Ma8!) was an example of a function on R1 that was differen-
tiable but not C1.

We calculate f ’s partials, starting with ∂f
∂x . If y = 0, we have f(x, 0) = 0; therefore,

∂f
∂x = 0.

Otherwise, if y 6= 0, we have two situations: either we’re finding ∂f
∂x at some point where

x 6= 0, in which case we can just differentiate normally:

∂f

∂x
= 2xy2 · sin

(
1

xy

)
− y cos

(
1

xy

)
.

However, if we’re in the situation where we want to find ∂f
∂x at a point where y 6= 0, x = 0,

because our function is piece-wise defined, we have to use the definition of the derivative to
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find ∂f
∂x :

∂f

∂x
= lim

h→0

f(y, 0 + h)− f(y, 0)

h

= lim
h→0

h2y2 · sin
(

1
xy

)
− 0

h

= lim
h→0

hy2 · sin
(

1

xy

)
= 0.

Similarly, for ∂f
∂y , we can show that whenever both x, y 6= 0, we have

∂f

∂y
= 2x2y · sin

(
1

xy

)
− x cos

(
1

xy

)
,

and whenever either of x or y are zero, ∂f
∂y = 0.

So: notice that ∂f
∂x is discontinuous at all of the points (0, y) where y 6= 0: this is

because its derivative at (0, y) is 0, while the limit as x approaches zero of the function

2xy2 · sin
(

1
xy

)
− y cos

(
1
xy

)
does not exist (and in fact fluctuates rapidly between y and −y

as x approaches 0.) Similarly, we can see that ∂f
∂y is discontinuous at all of the points (x, 0)

where x 6= 0.
However, as it turns out, our function has a total derivative at all of these points! In

specific, we have (for points of the form (0, y)) the limit

lim
||(h1,h2)||→0

f((0, y) + (h1, h2))− f(0, y)− T(0,y) · (h1, h2)
||(h1, h2)||

= lim
||(h1,h2)||→0

(h21 · (y + h2)
2) sin

(
1

h1(y+h2)

)
− 0− (0, 0) · (h1, h2)

||(h1, h2)||
.

= lim
||(h1,h2)||→0

(h21 · (y + h2)
2) sin

(
1

h1(y+h2)

)
||(h1, h2)||

.

The fraction in this limit is bounded below by

−h21
||(h1, h2)||

· (y + h22) ≥ −
h21
|h1|
· (2y)2 = −|h1| · (2y)2,

and above by

h21
||(h1, h2)||

· (y + h2)
2 ≤ h21
|h1|
· (2y)2 = |h1| · (2y)2,
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for all values of h2 < y. So: notice that lim(h1,h2)→0 |h1| · (2y)2 is clearly 0; therefore, as
(h1, h2)→ 0, we know that both of these bounding limits converge to 0. Therefore, by the
squeeze theorem, we know that our original limit must converge to 0 as well – and thus that
our function has a total derivative at all points of the form (0, y), where y 6= 0!

Similar logic shows that it has a total derivative at all points of the form (x, 0) where
x 6= 0, as well as at (0, 0): then, because our partials *are* continuous on the open set
{(x, y) : x 6= 0 and y 6= 0}, we know that our function has a total derivative everywhere in
R2! So we’ve proven our claim.
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