
Math 1c TA: Padraic Bartlett

Recitation 2: The Derivative

Week 2 Caltech 2012

1 Random Question

A Barker sequence of length n is a sequence

a1, a2, . . . an

of numbers, all equal to either to +1 or −1, such that the autocorrelation coefficients

ck =

∣∣∣∣∣
n−k∑
i=1

ai · ai+k

∣∣∣∣∣
are all ≤ 1. Roughly speaking, this means that if you have two streams of the same Barker
sequence coming in from two different sources, and you combine these two streams by
multiplying them together, you will always get a very weak output (≤ 1) whenever these
two streams are out of synch at all, but a really strong output (= n, the length of the
sequence!) when they are completely synched up.

Step 1: Find Barker sequences with lengths 2,3,4,5,7,11, and 13.
Step 2: Show that there are no Barker sequences with length longer than 13. (This is

an open question! As such, let me / the world of mathematics and engineering know if you
solve or disprove it.)

2 The Derivative

This recitation is centered around the idea of a derivative in Rn, and how we can develop
a “good” notion of the derivative in the multivariable case using our intuition from the
single-variable case. There are a number of possible ways to do this! Perhaps the easiest is
the concept of a partial derivative, which we define below:

Definition. The partial derivative ∂f
∂xi

of a function f : Rn → R along its i-th coördinate
at some point a, formally speaking, is the limit

lim
h→0

f(a + h · ei)− f(a)

h
.

(Here, ei is the i-th basis vector, which has its i-th coördinate equal to 1 and the rest equal
to 0.)

However, this is not necessarily the best way to think about the partial derivative, and
certainly not the easiest way to calculate it! Typically, we think of the i-th partial derivative
of f as the derivative of f when we “hold all of f ’s other variables constant” – i.e. if we
think of f as a single-variable function with variable xi, and treat all of the other xj ’s as
constants. This method is markedly easier to work with, and is how we actually *calculate*
a partial derivative.
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For an example, consider the following function, whose graph in R3 is a hyperboloid
of one sheet:

Example. Suppose that we let f(x, y) =
√
x2 + y2 − 1. What are the partial derivatives

of f at (1,−1)? Geometrically speaking, how can we interpret these partial derivatives?

Answer. If we hold y constant above and think of f as a single-variable function with
variable x, we can use our Ma1a skills to take the derivative of this as a function solely in
f :

∂f

∂x
=

2x

2
√
x2 + y2 − 1

=
x√

x2 + y2 − 1
.

Similarly, if we hold y constant and think of f as a single-variable function with variable y,
we can calculate

∂f

∂y
=

2y

2
√
x2 + y2 − 1

=
y√

x2 + y2 − 1
.

Plugging in (1, 1) gives us

∂f

∂x
=

1√
12 + (−1)2 − 1

= 1,

∂f

∂y
=

−1√
12 + (−1)2− 1

= −1.

Visually, if we look at the graph of f(x, y) near the point (1,1), we can see that these
partial derivatives are telling us how the z-co”ordinate changes as we vary our inputs x or y
near (1,1). Specifically, these partial derivatives are telling us that near (1,1), relatively small
increases in x will produce increases of roughly the same magnitude in z, while relatively
small increases in y will produce decreases of about the same magnitude in z. I.e. near
(1,1), our function has roughly “slope 1” in the xz-plane, and “slope −1” in the yz-plane:

z

x

y(1,-1)

2



Partial derivatives are great in the sense that they’re really easy to calculate: all we
have to do is use our single-variable skills, and we can easily calculate pretty much any
partial derivative! However, in of itself, a partial derivative is not as immediately useful as
the derivative was back in single-variable calculus.

Specifically, in Math 1a, we thought of the derivative of a function as giving us a way
to create a “linear approximation” of that function! I.e. for R1, the derivative f ′(a) was a
constant such that the function f(a) + xf ′(a) was “very close” to f(x) near a: i.e. it was a
constant chosen such that the limit

lim
h→0

f(a + h)− f(a)− f ′(a) · h
h

= 0.

(i.e. in the above limit, subtracting f(a)+f ′(a) ·h took away the “linear” part of f , leaving
it with only (if f had a Taylor series

∑
cix

i) terms that are quadratic or higher-order.)
Analogously, for f : Rn → R, we can ask that the derivative be something similar!

Specifically, consider the following definition:

Definition. The function f : Rn → R has a total derivative Ta at some point a if
f(a) + Ta · (x) is a “linear approximation” of f at a: i.e. if the limit

lim
||h||→0

f(a + h)− f(a)− Ta · h
||h||

= 0.

While this definition of the derivative has the advantage that it captures this idea of a
“linear approximation” in a way that the directional derivative doesn’t obviously do, it has
the downside that it seems impossible to calculate! How can we find such a thing?

Consider the following definition and theorem:

Definition. The differential of a function f : Rn → Rm is the following matrix of partial
derivatives:

D(f)
∣∣
a

=

(
∂fi
∂xj

(a)

)
.

Theorem 1 If f : Rn → Rm has a total derivative at the point a, then this total derivative
is simply the differential of f : i.e.

Ta = D(f)
∣∣
a

(
∂fi
∂xj

(a)

)
.

A quick consequence of the above theorem is that if f has a total derivative at some
point a, it has all of its partial derivatives at that point a. A question we could then ask is
the following: does the converse hold? In other words, if a function f has all of its partial
derivatives at some point, does it have a total derivative at that point?

As it turns out: no! Consider the following example:

Example. The function

f(x, y) =

{
y3

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

has partial derivatives ∂f
∂x ,

∂f
∂y defined on all of R2, and yet has no total derivative at (0, 0).
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Solution. To find f ’s partial derivatives, we simply calculate and break things apart into
cases.

Specifically, for ∂f
∂x , there are two possible situations we can find ourself in: either y 6= 0,

or y = 0. In the first case, if we hold y constant and differentiate with respect to x, we have
(by differentiating)

∂f

∂x
=
−2xy3

(x2 + y2)2
.

In the second, because y = 0⇒ f(x, y) = 0, we’re looking at the derivative with respect to
x of a function that’s identically 0! This is obviously 0: therefore, in this situation we have

∂f

∂x
= 0.

(We have to calculate things in cases above because f is piecewise-defined: therefore,
it’s possible that the derivative changes when we run into the piecewise-defined part.)

Similarly, for ∂f
∂y , we have that whenever x 6= 0, we have (by holding x constant and

differentiating with respect to y)

∂f

∂y
=

3y2

x2 + y2
− 2y4

(x2 + y2)2
.

Whenever x = 0, we have f(0, y) = y3

y2
= y for y 6= 0, and f(0, 0) = 0 = y for y = 0. In

other words, we have f(0, y) = y; therefore, we can see that in this situation we have

∂f

∂y
= 1.

So: we know that if our function *did* have a total derivative at (0, 0), it would be

given by the partials – i.e. that T(0,0), if it exists, must be

(
∂f
∂x

∣∣∣
(0,0)

, ∂f∂y

∣∣∣
(0,0)

)
= (0, 1).

However, when we examine the limit

lim
||(h1,h2)||→0

∣∣f((0, 0) + (h1, h2))− f(0, 0)− T(0,0) · (h1, h2)
∣∣

||(h1, h2)||

= lim
||(h1,h2)||→0

∣∣∣ h3
2

h2
1+h2

2
− 0− (0, 1) · (h1, h2)

∣∣∣
||(h1, h2)||

= lim
||(h1,h2)||→0

∣∣∣ h3
2

||(h1,h2)||2 − h2

∣∣∣
||(h1, h2)||

= lim
||(h1,h2)||→0

∣∣h2(h22 − ||(h1, h2)||2)∣∣
||(h1, h2)||3

,
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we can see that along the line h1 = h2, we have

lim
||(h1,h2)||→0

h2(h
2
2 − ||(h1, h2)||2)
||(h1, h2)||3

= lim
h2→0

h2(h
2
2 − (

√
h22 + h22)

2)

(
√
h22 + h22)

3

= lim
h2→0

h2(h
2
2 − 2h22)

(
√

2h22)
3

= lim
h2→0

−h32
(
√

2)3 · |h2|3

= lim
h2→0

−h2/|h2|
2
√

2
,

which goes to − 1
2
√
2

when h2 is positive and goes to 0, and 1
2
√
2

when h2 is negative and

goes to 0. In either case, this limit is certainly not 0; therefore, our function is not totally
differentiable at (0, 0).

What went wrong above? Well, while our function *did* have all of its partial deriva-
tives, they weren’t exactly the nicest partial derivatives you could hope for. For example,
if you looked at ∂f

∂x along the line x = y, whenever x 6= 0 we had

∂f

∂x
=
−2x · x3

(x2 + x2)2
=
−2x4

4x4
= −1

2
.

However when x = y = 0, we have ∂f
∂x (0, 0) = 0! So, this partial is not a continuous

function on all of R2. As a result, its behavior at (0, 0) – which we use to define T(0,0) –
doesn’t accurately represent its behavior *near* (0,0), which is why T(0,0) failed to be a
good linear approximation to f near (0, 0).

As it turns out, this is the *only* way in which we can have partials and yet not have
a total derivative! Specifically, we have the following theorem:

Theorem 2 For a function f : Rn → R, if all of f ’s partials exist in a neighborhood of a
and are continuous at the point a, then f has a total derivative at a.

Throughout this class, we’ll use this theorem pretty much whenever we want to prove
something is differentiable, because (as you saw above!) actually using the definition of
differentiablilty is typically fairly awful/calculation-intensive.

So: we have a derivative. What can we do with it?

3 Applications of the Derivative

One of the most natural/useful applications of the derivative is the concept of the tangent
plane, which we define here:

Definition. Take a function f : Rn → R that’s differentiable at some point a. We can
define the tangent plane to f at a as the set of all points (x1, . . . xn+1) that satisfy the
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following linear equation:

xn+1 − f(a) =

(
∂f

x1
(a),

∂f

x2
(a), . . .

∂f

xn
(a)

)
· (x− a1, x− a2, . . . x− an) .

In the specific case where n = 2 and we’re looking at a function of the form f(x, y), note
that this forms an actual plane in R3, with slopes in the xz and yz- planes that match the
slopes ∂f

x , ∂fy .

In other words, the tangent plane to a function is the plane with slopes given by its
partial derivatives.

This concept is perhaps best illustrated with an example:

Example. The function

f(x, y) =

√
1− x2

4
− y2

4

has the tangent plane z − 1 = 0 at (0, 0, 1).

Proof. Using our understanding of how partial derivatives work, we can calculate that

∂f

∂x
=

−2x/4

2
√

1− x2

4 −
y2

4

= − x

4
√

1− x2

4 −
y2

4

,

and

∂f

∂y
=

−2y/4

2
√

1− x2

4 −
y2

4

= − y

4
√

1− x2

4 −
y2

4

.

In particular, at (0,0) we can calculate that both of these quantities are 0, and therefore
that the equation for our tangent plane there is

z − f(0, 0) =

(
∂f

∂x
(0, 0),

∂f

∂y
(0, 0)

)
· (x− 0, y − 0)

⇒ z −
√

1− 02 − 02 = (0, 0) · (x, y)

⇒ z − 1 = 0

We graph this situation below:

z

x

y
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Another application of the derivative is to the concept of a tangent vector, which we
define here:

Definition. For a function f(t) : R→ Rn, we can define the tangent vector to f at some
value a as the vector (

∂f1
∂t

(a),
∂f2
∂t

(a), . . .
∂fn
∂t

(a)

)
,

whenever this quantity is nonzero. (When it is 0, it’s not really quite a “tangent” vector as
it doesn’t have a direction; so that’s why we ask that this vector is not identically 0.)

Visually, if you’re thinking of f as the function corresponding to the position of a particle
in Rn at some time t, the tangent vector can be interpreted as the velocity vector for
the particle at time t.

Again, we illustrate this with an example:

Example. The function

f(t) = (t2, t3)

has the tangent vector (2, 3) at time t = 1.

Proof. This is a pretty trivial calculation: by the definition above, we have that

D(f)(t) =

(
∂f1
∂t

(a),
∂f2
∂t

(a)

)
= (2t, 3t2)

⇒ D(f)(1) = (2, 3).

4 Tools for Taking Derivatives

Switching gears somewhat, we now turn from the theory of derivatives to a more practical
approach – how do we calculate these things? For functions R1 → R1, in particular, we had
things like the product and chain rule; are there analogues for functions Rn → Rm?

Well: yes! Specifically, for the product rule, we have the following theorem:

Theorem 3 Suppose that f, g are a pair of functions Rn → Rm, and we’re looking at the
inner product1 f · g of these two functions. Then, we have that

D(f · g)
∣∣∣
a

= f(a) · (D(g))
∣∣∣
a

+ g(a) · (D(f))
∣∣∣
a
.

We have a similar extension of the chain rule to the multivariable case, as well:

1Recall that the inner product of two vectors u,v is just the real number
∑m

i=1 uivi.
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Theorem 4 Take any function g : Rm → Rl, and any function f : Rn → Rm. Then, we
have

D(g ◦ f)
∣∣∣
a

= D(g)
∣∣∣
f(a)
·D(f)

∣∣∣
a
.

One interesting/cautionary tale to notice from the above calculations is that the partial
derivative of g ◦ f with respect to one variable xi can depend on many of the variables and
coördinates in the functions f and g!

I.e. something many first-year calculus students are tempted to do on their sets is to
write

∂(g ◦ f)i
∂xj

∣∣∣
a

=
∂gi
∂xj

∣∣∣
f(a)
· ∂fi
∂xj

∣∣∣
a
.

DO NOT DO THIS. Do not do this. Do not do this. Ever. Because it is wrong. Indeed,

if you expand how we’ve stated the chain rule above, you can see that ∂(g◦f)i
∂xj

∣∣∣
a

– the (i, j)-th

entry in the matrix D(g ◦ f) – is actually equal to the i-th row of D(g)
∣∣∣
f(a)

multipled by

the j-th column of D(f)
∣∣∣
a

– i.e. that

∂(g ◦ f)i
∂xj

∣∣∣
a

=

[
∂gi
∂x1

∣∣∣
f(a)

. . . ∂gi
∂xm

∣∣∣
f(a)

]
·


∂f1
∂xj

∣∣∣
a
...

∂fm
∂xj

∣∣∣
a

 .

Notice how this is much more complex! In particular, it means that the partials of g ◦ f
depend on all sorts of things going on with g and f , and aren’t restricted to worrying about
just the one coördinate you’re finding partials with respect to.

The moral here is basically if you’re applying the chain rule without doing a *lot* of
derivative calculations, you’ve almost surely messed something up. So, when in doubt, just
find the matrices D(f) and D(g)!

We work one example, to illustrate how to do these kinds of calculations:

Example. If f(x) = (x, x2, x3) and g(x, y, z) = sin(xyz), use the chain rule to find D(g ◦
f)
∣∣∣
a
, for any a ∈ R.

Solution. If we straightforwardly apply the chain rule, we have that

D(g ◦ f)
∣∣∣
a

= D(g)
∣∣∣
f(a)
·D(f)

∣∣∣
a

=

[
∂g
∂x

∣∣∣
f(a)

∂g
∂y

∣∣∣
f(a)

∂g
∂z

∣∣∣
f(a)

]
·


∂f1
∂x

∣∣∣
a

∂f2
∂x

∣∣∣
a

∂f3
∂x

∣∣∣
a


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=

[
yz · cos(xyz)

∣∣∣
(a,a2,a3)

xz · cos(xyz)
∣∣∣
(a,a2,a3)

xy · cos(xyz)
∣∣∣
(a,a2,a3)

]
·


1
∣∣∣
a

2x
∣∣∣
a

3x2
∣∣∣
a


=
[
a5 · cos(a6) a4 · cos(a6) a3 · cos(a6)

]
·

 1
2a
3a2


= a5 · cos(a6) + 2a5 · cos(a6) + 3a5 · cos(a6)

= 6a5 · cos(a6).

As a quick sanity check, we can verify that this makes sense by just looking at the
function g ◦ f directly: g ◦ f(x) = sin(x · x2 · x3) = sin(x6), and therefore (g ◦ f)′(a) =
6a5 · cos(a6) by applying the one-dimensional version of the chain rule.
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