
Math 1c TA: Padraic Bartlett

Recitation 5: The Midterm Review

Week 5 Caltech 2013

You have a midterm! Specifically, you have a midterm that’s going to be on the following
topics:

• Level curves. Be able to draw them.

• Limits in Rn. Specifically, given a function f : Rn → R and a point a ∈ R, you should
know how to determine whether the limit lim

x→a
f(x) exists, and be able to prove your

claim.

To prove that a limit exists, your first plan should be to attempt to use and combine
simpler, already-studied limits to understand this new limit; as a backup plan, if this
fails, you should be able to pursue an ε−δ proof. To prove that a limit does not exist,
you should be able to show this by finding two paths through the point a such that
the function’s limit along one path is not equal to the function’s limit along the other
path.

• Differentiation in Rn. You should know how to calculate the partial derivatives
of functions, as well as the higher-order derivatives and mixed partial derivatives
of a function. You should be comfortable with how the chain rule works in higher
dimensions, and be able to use it.

• Approximating functions in Rn. You should know how to find the tangent plane
(i.e. first-order approximation) to a surface or function at a given point. You should
know how to find the second-order Taylor approximation to a function at a given
point.

• Finding and classifying unconstrained extrema. You should know how to use
the gradient of a function to find its critical points, and then how to use the Hessian
to classify some of these critical points.

• Finding and classifying constrained extrema. You should know how to use the
method of Lagrange multipliers to find extrema. Specifically, you should know on
what constraint sets the method of Lagrange multipliers guarantees that you will find
a maxima, and how to then apply the method of Lagrange multipliers to find said
maxima.

• Vector fields. Given a vector field V : Rn → Rn, for n equal to either 2 or 3, you
should be able to calculate the divergence and curl of this vector field. You should
be able to determine if a given curve γ is a flow line of this vector field. You should
be able to determine whether or not it is possible for this V to be written as the
gradient ∇f of some function f : Rn → R, or as the curl ∇×G of some other function
G : Rn → R.
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I have examples! Specifically, I have example problems on all of these concepts. This
handout is made out of six problems that deal with the concepts listed above, and are all
about a little harder than the problems you’ll see on the midterm. In theory, understanding
the material we’ve discussed throughout the course should be equivalent to understanding
how to solve and talk about the problems in this handout; so, if you feel comfortable with
these examples, the midterm should (theoretically) go well for you.

Example. (Lagrange multipliers; level curves.) Consider the function

g(x, y) = e−x
2−y2 − x2y2.

(a) Draw several level curves of this function.

(b) Let f(x, y) = x + y, and let S be the constraint set given by the level curve {(x, y) :
g(x, y) = c}. For what values of c does f

∣∣
S

have a global maximum? For what values
does it fail to have a global maximum: i.e. for what values of c is f unbounded on S?

(c) For c = 1
4 , find the global maximum of f on the above constraint set S = {(x, y) :

g(x, y) = c}.

Solution. We graph g(x, y) = z in red, along with three level curves in different shades of
blue, in the following picture.

Roughly speaking, there are three kinds of level curves for our function:
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1. Level curves g(x, y) = c, where c is close to 1. There, because we need g to be close to
1, we need to have x and y very small (so that the e−x

2−y2 part is as close to 1 as we
can get it, and the −x2y2 part is not too large.) In particular, this forces us to have a
roughly circular shape, as for very small values of (x, y) the x2y2 part is insignificant
and our function looks roughly like e−x

2−y2 , which is roughly 1− x2 − y2 (via Taylor
series) for small values of (x, y).

2. Level curves g(x, y) = c, where c is greater than 0, but not by much. For these values
of c, we wind up having kind of a “four-armed” shape, with arms stretching out along
the x- and y- axes. This is because when one of our coordinates is nearly zero, the
other can become much larger (because our function is roughly e−x

2−y2 then), whereas
when the coordinates are roughly the same, the dominant term is now the −x2y2 term,
and we need to have both x and y be much smaller.

3. Level curves g(x, y) = c, where c is ≤ 0. In these cases, our level curves look like
hyperbola-style curves, one in each quadrant. This is because on each axis, our func-
tion g(x, y) can never be 0, as the e−x

2−y2-part is always positive and the −x2y2 part
is zero on the axes.

This graphing and subsequent analysis suggests an answer to part (b), as well:

Claim 1 Our function f(x, y) has a global maximum on the curve g(x, y) = c if and only
if 1 ≥ c > 0.

Proof. If c > 1, then there are no points (x, y) such that g(x, y) = c, because e−x
2−y2 is

bounded above by e0 = 1, while −x2y2 is bounded above by 0.
So: suppose that 1 ≥ c > 0. Then, if (x, y) are such that g(x, y) = c, we know that in

particular

e−x
2−y2 ≥ c

⇒ − x2 − y2 ≥ ln(c)

⇒ x2 + y2 ≤ − ln(c)

⇒
√
x2 + y2 ≤

√
− ln(c)

⇒ ||(x, y)|| ≤
√
− ln(c),

i.e. the point (x, y) can be no further than
√
− ln(c) from the origin. (Because 1 ≥ c > 0, we

know that −∞ < ln(c) ≤ 0, and therefore that this is a well-defined finite and real-valued
bound on distances.)

Therefore, the set of points such that g(x, y) = c is bounded. We also know that it is
closed, because it is the level curve of a continuous function. Therefore, we know that any
continuous function (in particular, f) will attain its global maxima and minima on this set,
and do so at the critical points identified by the method of Lagrange multipliers.

Finally, suppose that c ≤ 0. In this case, our claim is that f does not attain its global
maximum on g(x, y) = c. To prove this, pick any value of n: we want to find a point (x, y)
on our curve such that f(x, y) > n.
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To do this, we simply use the intermediate value theorem. Pick any n, and choose x
such that −x2 < c− 1, and also x > n. Then, we know that

g(x, 0) = e−x
2−0 − x2 · 0 = e−x

2
> 0 ≥ c,

while

g(x, 1) = e−x
2−1 − x2 · 1 = e−x

2 − x2 < e−x
2 − c− 1 < c,

because e−x
2
< 1.

Therefore,because g(x, 0) > c and g(x, 1) < c, by the intermediate value theorem, there
is some value of y between 0 and 1 such that g(x, y) = c. At this point (x, y), we know that

f(x, y) = x+ y ≥ n+ 0 ≥ n,

which is what we wanted to prove: i.e. we’ve shown that we can find points on our curve
along which f(x, y) is arbitrarily large, and therefore that there is no global maximum.

Finally, with this theoretical discussion out of the way, we can turn to the calculational
part of (c), which asks us to find the global maximum of our function f on the constraint set
g(x, y) = 1

4 . First, note that by our above discussion, we know that a global maximum does
exist, because when 1 ≥ c > 0 we’ve shown that our constraint set is closed and bounded.
Furthermore, to find this maximum, it suffices to use the method of Lagrange multipliers
to find all of the critical points of our function restricted to this curve, and simply select
the largest value amongst these critical points. (Again, this is because g(x, y) = c is closed
and bounded, which means that our global maximum must occur a critical point.)

So: we calculate. We are looking for any points (x, y) such that either

• ∇(f) or ∇(g) are 0,

• ∇(f) or ∇(g) are undefined, or

• there is some constant λ such that ∇(f) = λ∇(g).

Because

∇(f)(x, y) = (1, 1) ,

we can immediately see that ∇(f) is never undefined or zero.
Similarly, because

∇(g) =
(
−2xe−x

2−y2 − 2xy2,−2ye−x
2−y2 − 2yx2

)
,

we can see that the first component of ∇(g) is zero if and only if

0 = −2xe−x
2−y2 − 2xy2

⇔0 = −2x
(
e−x

2−y2 + y2
)

⇔0 = x, because e−x
2−y2 + y2 is strictly positive.
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Similarly, we can see that the second component of ∇(g) is zero if and only if

0 = −2ye−x
2−y2 − 2yx2

⇔0 = −2y
(
e−x

2−y2 + x2
)

⇔0 = y, because e−x
2−y2 + x2 is strictly positive.

So ∇(g) is always defined and is only zero at (0, 0), which is not a point on our curve
g(x, y) = 1

4 . Therefore, the only points we’re concerned with are ones at which ∇(f) =
λ∇(g); i.e. points such that

∇(f) = (1, 1) = λ∇(g) = λ
(
−2xe−x

2−y2 − 2xy2,−2ye−x
2−y2 − 2yx2

)
⇔− 2xe−x

2−y2 − 2xy2 = −2ye−x
2−y2 − 2yx2,

because the above equation is equivalent to forcing both the left and right coordinates of
∇(g) to equal the same quantity (namely, 1

λ .)
Solving, we can see that this is equivalent to

0 = 2xe−x
2−y2 + 2xy2 − 2ye−x

2−y2 − 2yx2

⇔2(x− y)e−x
2−y2 − 2xy(x− y) = 0.

If x− y = 0, i.e. x = y, this equation holds. Otherwise, we can divide through by 2(x− y),
and get

e−x
2−y2 = xy.

Plugging this into our constraint equation g(x, y) = 1
4 gives us

e−x
2−y2 − (xy)2 =

1

4
⇒ (xy)− (xy)2 =

1

4
⇒ xy =

1

2
,

by thinking of “xy” as one term and using the quadratic formula. But, if we think about
what this means for the equation e−x

2−y2 = xy, and specifically use y = 1
2x , we have

1

2
= xy = e−x

2−y2 = e−x
2− 1

4x2 .

This is impossible! In specific, by taking a single-variable derivative, you can easily see that
the largest value of −x2 − 1

4x2
happens at x = 1√

2
, at which this is −1. This means that

the largest that e−x
2 − 1

4x2
gets is e−1 = 1

e , which is smaller than 1
2 .

Therefore, the only points at which ∇(f) = λ∇(g) are those at which x = y. Plugging
this into our constraint g(x, y) = 1

4 yields

e−2x
2 − x4 =

1

4
⇒x ≡ ±.65.

The function f(x, y) = x + y is equal to 1.3 at the point (.65, .65) and is equal to −1.3
at (−.65,−.65). Therefore, by our discussion earlier about how f must attain its global
minima and maxima at the critical points discovered by the Lagrange multiplier process,
we can safely conclude that (.65, .65) is roughly the point at which f(x, y) attains its global
maxima, which is roughly 1.3.
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Example. (Limits.) Either determine the following limits (with proof,) or show that they
do not exist:

(a) lim
(x,y,z)→(0,0,0)

||(x, y, z)||
||(x, y, z)||+ ln(|x+ y + z|+ 1)

(b) lim
(x,y)→(0,0)

sin(x4 + y4)

x2 + y2

Solution. First, recall from our first recitation how we typically go about showing that
limits either exist or do not exist.

• Showing that a limit exists: Often, the easiest approach to showing that a limit
exists is to bound it or break it into smaller, single-variable limits, and use your Math
1a knowledge to deal with these limits. I.e. you can break things like x + y + z into
three individual single-variable limits, which are easy to calculate, and you can bound
things like sin(xyz)x above by |x|.
If this fails, and you’re still convinced that the limit exists, then you should try the
ε−δ definition of limits. Refer to the recitation 1 notes for a blueprint that will safely
guide you though a ε− δ proof.

• Proving discontinuity/that a limit DNE: One of the easiest ways to show that
a limit limx→a f(x) does not exist is to find two paths that both go through a, but
such that f(x) has different limits on each path as they approach a. Good paths are
usually the x- or y- axes, or lines wherex = y, or lines where x = y2, though these are
not the only lines to consider; often, the right paths to consider will become obvious
only when you’re actually looking at the function in question.

Now that we remember how to deal with limits, we tackle the two examples in this
problem:

(a) lim
(x,y,z)→(0,0,0)

||(x, y, z)||
||(x, y, z)||+ ln(|x+ y + z|+ 1)

.

Looking at this function, it seems likely that the limit will not exist. Along certain paths, it
seems like the natural log term in the denominator will grow at a similar rate to ||(x, y, z)||,
because natural log has a linear term in its Taylor series and therefore grows kind-of linearly
near 1, which is what ||(x, y, z)|| is also growing like. However, along other paths, we can
probably make the natural log term be 0, and therefore not let it influence the limit.

This intuition turns out to be true! In particular, if we look at our function along the

line x = y = z, we have that it’s
√
3x2√

3x2+ln(9|x|+1)
, and therefore that

lim
x→0+

|x|
√

3

x
√

3 + ln(9|x|+ 1)

L’H
= lim

x→0+

√
3√

3 + 9
9|x|+1

=

√
3√

3 + 9
.
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However, if we look at our function along the line x = −y, z = 0, we have that it’s just
||(x,y,z)||

||(x,y,z)||+ln(1) = ||(x,y,z)||
||(x,y,z)||+0 = 1, and therefore that our limit is 1. These are different values;

therefore, our function has no limit at 0.
Conversely, for

(b) lim
(x,y)→(0,0)

sin(x4 + y4)

x2 + y2
,

it seems like we should have a limit at 0: we know that for for small values, sin is roughly
its input, and therefore because the numerator will roughly be a higher-order polynomial
than the denominator, as we go to 0 our limit should be 0.

To make this rigorous, we use the squeeze theorem. Because | sin(a)| ≤ |a| for any input
a, we have in specific that ∣∣∣∣sin(x4 + y4)

x2 + y2

∣∣∣∣ ≤ x4 + y4

x2 + y2
.

To make this easier to deal with, observe that we can bound the numerator above by
2 · max(x4, y4) and the denominator below by max(x2, y2), because all of the quantities
involved are positive. Doing this gives us that

x4 + y4

x2 + y2
≤ 2 ·max(x4, y4)

max(x2, y2)
= 2 ·max(x2, y2).

Therefore, because lim(x,y)→(0,0) 2 ·max(x2, y2) = 0, the squeeze theorem tells us that

(b) lim
(x,y)→(0,0)

sin(x4 + y4)

x2 + y2
= 0

as well.

Example. (Tangent planes.) Let S be the surface in R3 formed by the collection of all
points (x, y, z) such that exyz = e. Find the tangent plane to S at (1, 1, 1).

Solution. One way to attack this problem is to apply natural logs to both sides, which lets
us write S as the collection of all points (x, y, z) such that xyz = 1; i.e. all points x, y 6= 0
such that z = 1

xy . In other words, we can write S as the graph of the function f(x, y) = 1
xy .

We know that the gradient of f(x, y) is just(
− y

(xy)2
,− x

(xy)2

)
,

which at 1 is just (−1,−1). Therefore, using the formula from class for describing the
first-order Taylor approximation – i.e. tangent plane – of functions of the form f(x, y) = z,
we have that the tangent plane to our surface at (1, 1, 1) is just

(z − 1) = ∇(f)
∣∣∣
(1,1,1)

· (x− 1, y − 1) = (−1,−1) · (x− 1, y − 1)

⇒z − 1 + x− 1 + y − 1 = 0.
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Alternately, we also discussed a second formula in class for finding tangent planes to
surfaces of the form g(x, y, z) = C, at some point (a, b, c). Specifically, we observed that
the gradient of g at the point (a, b, c) was orthogonal to the tangent plane to our surface
at this point: in other words, that we could define our tangent plane as just the set of all
vectors orthogonal to the gradient of g through this point. As a formula, this was

0 = ∇(g)
∣∣∣
(1,1,1)

· (x− 1, y − 1, z − 1)

⇔0 = (yzexyz, xzexyz, xyexyz)
∣∣∣
(1,1,1)

· (x− 1, y − 1, z − 1)

⇔0 = (1, 1, 1) · (x− 1, y − 1, z − 1)

⇔0 = z − 1 + x− 1 + y − 1.

Reassuringly, we get the same answer no matter which method we pick.

Example. (Chain rule.) Let g : R4 → R be defined by the equation (w, x, y, z) = (wz−yx),
and hλ : R2 → R4 be defined by the equation hλ(a, b) = (a, λa, b, λb).

(a) Calculate the derivative of g ◦ hλ using the chain rule.

(b) Geometrically, explain why your answer in (a) is “obvious,” in some sense.

Solution. So, we know that both g and hλ are continuous functions on all of their domains;
therefore, we know that their composition is continuous everywhere. Therefore, we know
that the total derivative of g ◦ hλ is just given by the partial derivatives of g ◦ hλ: i.e.
T (g ◦ hλ) = D(g ◦ hλ). Therefore, we can use the chain rule:

D(g ◦ hλ)

∣∣∣∣∣
(a,b)

= D(g)

∣∣∣∣∣
hλ(a,b)

·D(hλ)

∣∣∣∣∣
(a,b)

=
[
z −y −x w

] ∣∣∣∣∣
hλ(a,b)

·


1 0
λ 0
0 1
0 λ



=
[
λb −b −λa a

]
·


1 0
λ 0
0 1
0 λ


= [λb− λb, λa− λa]

= [0, 0].

Notice that this is geometrically somewhat obvious because g is just the determinant of

the matrix

(
w x
y z

)
, while the function hλ just outputs the rank-1 matrix

(
a b
λa λb

)
.

Because the determinant of a rank 1 matrix is 0, we have that g ◦ hλ is identically 0, and
therefore also has derivative 0.
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Example. (Taylor series; directional derivatives.) Let g(x, y) = sin(xy).

(a) Calculate the directional derivative of g(x, y) at (1, 2) in the direction (3, 4).

(b) Calculate the second-order Taylor approximation of g(x, y) at (0, 0).

Solution. Because the gradient of g is just

∇(g) = (y cos(xy), x cos(xy)),

we know that the directional derivative at (1, 2) in the direction (3, 4) is just given to us by
the dot product of ∇(g)(1, 2) with the unit-length vector in the direction (3, 4), given
by 1
||(3,4)|| · (3, 4) = 1√

9+16
(3, 4) =

(
3
5 ,

4
5

)
:

∇(g)(1, 2) ·
(

3

5
,
4

5

)
= (2 cos(1), cos(2)) ·

(
3

5
,
4

5

)
=

6 cos(1) + 4 cos(2)

5
.

To calculate the Taylor approximation of g at (0, 0), we just need to construct the
following function:

T2(g)
∣∣
(0,0)

(h1, h2) = g(0, 0) +∇(g)
∣∣
(0,0)
· (x, y) +H(g)

∣∣
(0,0)

(x, y).

To do this, simply note that the Hessian H(g) of g is just

H(g)
∣∣
(0,0)

(h1, h2) =
1

2

[
h1, h2

] [ −y2 sin(xy) cos(xy)− xy sin(xy)
cos(xy)− xy sin(xy) −x2 sin(xy)

] ∣∣∣∣∣
(0,0)

[
h1
h2

]

=
1

2

[
h1, h2

] [ 0 1
1 0

]
·
[
h1
h2

]
=

1

2

[
h1, h2

] [ h2
h1

]
=

1

2
(h1h2 + h1h2)

= h1h2,

and therefore that

T2(g)
∣∣
(0,0)

(h1, h2) = g(0, 0) +∇(g)
∣∣
(0,0)
· (x, y) +H(g)

∣∣
(0,0)

(x, y)

= sin(0) + (0 cos(0), 0 sin(0)) · (x, y) + xy

= xy.

Therefore, the second-order approximation to sin(xy) at the origin is just T2(x, y) = xy.

Example. (Using derivatives to study local extrema.) Let

f(x, y) = −(x8 + y8) + 4(x6 + y6)− 4(x4 + y4).

Find all of the critical points of f , and classify them as local maxima, minima, or saddle
points. Determine whether f has either a global maxima or minima, and if so identify these
points.
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Solution. We start by graphing our function:

Roughly speaking, it looks like we have four global maxima, at least four saddle points
between these maxima, and probably a bunch of weird things going on in the interior part
of our function which are hard to determine from our picture. Probably a local minima in
there.

Picture aside, our task here is pretty immediate:

1. First, we want to calculate ∇(f), and find all of the points where it is either undefined
or 0. These are our critical points.

2. We then want to calculate H(f), the Hessian of f , for each critical point. If the
Hessian is positive-definite1, then we know that this point is a local minimum;
if it is negative-definite, then it’s a local maximum; if it has both a positive
eigenvalue and a negative eigenvalue, it’s a saddle point; and if it’s identically
0, we have no idea what’s going on, and will need to explore its behavior using other
methods.

So: by calculating, we can see that

D(f) = (−8x7 + 24x5 − 16x3,−8y7 + 24y4 − 16y3),

1We say that the Hessian is positive-definite if the associated matrix


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)


of second partial derivatives is positive-definite: i.e. it has n eigenvalues and they’re all positive. Negative-
definite is similar, except we ask that all of the eigenvalues exist and are negative; if you’re in neither case,
but your matrix is not identically 0, then you’re a saddle point.
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and therefore that this is equal to 0 whenever

0 = −8x7 + 24x5 − 16x3

⇔x = 0, or

0 = −8x4 + 24x2 − 16

⇔0 = (x2 − 2)(x2 − 1)

⇔x = ±
√

2,±1,

and

0 = −8y7 + 24y5 − 16y3

⇔y = 0,±
√

2,±1.

So we have twenty-five critical points, consisting of five choices of x and five choices of y. To
classify these points, we look at the matrix of second-order-partials formed in the Hessian:

∂2f
∂x1∂x1

(a) . . . ∂2f
∂x1∂xn

(a)
...

. . .
...

∂2f
∂xn∂x1

(a) . . . ∂2f
∂xn∂xn

(a)

 =

[
−56x6 + 120x4 − 48x2 0

0 −56y6 + 120y4 − 48y2

]
.

When x = ±1, the polynomial −56x6+120x4−48x2 is 16, which is positive; when x = ±
√

2,
this polynomial is−64, which is negative; finally, when x = 0 this polynomial is 0. Therefore,
at the points

(±1,±1)

the Hessian is positive-definite, and therefore our function has a local minimum, while at
the points

(±
√

2,±
√

2)

the Hessian is negative-definite, and therefore our function has a local maximum, while at

(±
√

2,±1), (±
√

2, 0), (±1,±
√

2), (±1, 0), (0,±
√

2), (0,±1)

the Hessian is neither identically 0 nor positive- or negative-definite, and therefore our
function has a saddle point.

This leaves just the point (0, 0), at which the Hessian is identically 0 and therefore
useless to us. There, we need to analyze how small changes in our function

f(x, y) = −(x8 + y8) + 4(x6 + y6)− 2(x4 + y4)

change its values.
If we wanted to argue that this function was a saddle point, we’d just have to find

two paths leaving 0, one along which our function increased and another along which our
function decreased. However, looking at the graph of the function, this actually seems
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like it’s not the case. Rather, for very small values of x, y, we know that x4 � x6, x8 and
y4 � y6, y8; therefore, very very close to the origin, our function is roughly just −2(x4+y4),
which is a upside-down parabola with a maximum at the origin. Therefore, we can see that
this point is actually a local maximum, because (using our approximation) at all values very
close to the origin that are not the origin, our function is roughly −2(x4 +y4) and therefore
quite decidedly < 0, its value at the origin.

So we’ve classified all of our points into local maxima, minima, or saddle points. We
now just need to decide whether any of them are global maxima or minima.

To do this: first, notice that as (x, y)→∞ along any path, our function goes to −∞; this
is because for sufficiently large values of x or y, the x8, y8 terms dominate our polynomial.
Therefore, our function does not have a global minimum. More interestingly, this also tells
us that our function does have a global maximum: because the values of our function go
off to −∞ as (x, y) go to infinity in every direction and our function is continuous and well-
defined everywhere, it has nowhere to “go off to +∞”: given any sufficiently large cutoff
radius R, we know that all of the values of f on points (x, y) further than R from the origin
is as incredibly negative as we’d want, while f inside of R is a continuous function on a
closed and bounded set, and therefore attains its global maximum.

Therefore, in particular we know that f attains its global maximum at one of our local
maxima (0, 0) or (±

√
2,±
√

2)! Because f is the same value (namely, 0) at each of these
points, each of these points is a place at which our function attains its global maxima, which
is 0.

Example. Take the vector field V (x, y) = (x2y2, x2 + y2) . Show that this vector field is
neither the curl nor the gradient of any function.

Proof. This is relatively straightforward. To show that V is not the gradient of any vector
field, we simply need to calculate the curl of V . If it is nonzero, then we know that it cannot
be a gradient.

Because V is a vector field on R2, in order to calculate its curl we treat it like a vector
field on R3 that has a 0 in its third component and does not depend on z. Then,

curl(V ) =

((
∂V3
∂y
− ∂V2

∂z

)
,

(
∂V1
∂z
− ∂V3

∂x

)
,

(
∂V2
∂x
− ∂V1

∂y

))
=
(
0− 0, 0− 0,

(
2x− 2yx2

))
,

which is not identically equal to 0.
Similarly, we can show that V is not a curl by calculating its divergence: if this is

nonzero, then V cannot be written as the curl of any vector field. We do this here:

div(V ) =
∂V1
∂x

+
∂V2
∂y

= 2xy2 + 2y,

which is clearly nonzero.
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