
Math 1c TA: Padraic Bartlett

Recitation 6: Integration in Rn

Week 6 Caltech 2013

1 Integration in Rn

In the first five weeks of this course, we’ve introduced topics like limits, derivatives and
optimization for functions on Rn; furthermore, whenever we’ve done so, we’ve built all
of our understanding and tools by looking at the 1-dimensional case, and extending our
knowledge of functions on R1 to the study of Rn. Today’s lecture, on integration in Rn, will
be another class in this format!

In R1, we had two ways of looking at the definite integral of a function f(x),
∫ b
a f(x)dx.

One was thinking of the integral as the area under the curve of f(x) from a to b: in
other words, the area of the region bounded by the lines x = a, x = b, y = 0 and the
curve f(x) = y. Another, which we discussed a bit less, was the idea of the integral as the
average of f(x) from a to b, multiplied by the length of the interval [a, b].

How can we “generalize” the integral to something we can calculate for functions f :
Rn → R? Well: first, we should generalize the concept of an interval [a, b] to a box in
Rn: i.e. a region of the form [a, b]× [c, d]× . . . in Rn. If we’ve done this, then the natural
generalization of our “area” concept, at least for functions R2 → R, is the idea of volume:
i.e. we can define the integral of f(x, y) over some box [a, b]× [c, d],∫

[a,b]×[c,d]
f(x, y)dA,

as simply the volume of the region bounded below by the plane z = 0, above by the surface
f(x, y) = z, and with x, y coördinates constrained to the box [a, b] × [c, d]. (The dA in
the expression above is a reminder that we’re integrating over a 2-dimensional region, and
therefore that the “tiny bits” that we’re using to integrate f are 2-dimensional, as opposed
to one-dimensional like dx or dy.)
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Similarly, if we’d rather extend the idea of “averages,” we can think of the integral of a
function in f : Rn → R over some box B as the average value of f over this entire box B,
multiplied by the volume of the box B.

We now have a way to think about the integral in Rn! The next natural thing to want
to study, then, is how we’d ever actually go about calculating an integral: specifically, how
we can use our past knowledge of integration in R1 to calculate integrals in Rn. For the
moment, let’s think about functions f(x, y) : R2 → R. If we’re thinking of the integral
in the above “volume” sense, then the following process makes sense as a possible way to
calculate the integral in R2:

• Start with a function f(x, y). We want to find the volume of the region between
z = f(x, y) and the plane z = 0, restricted to the box [a, b]× [c, d].

• To do this, pick any constant value λ ∈ [a, b], and calculate the one-dimensional

integral
∫ d
c f(λ, y)dy. This is giving you the “area” of various cross-sections of the

region we’re studying, corresponding to the slices we get by setting x equal to said
constant.

• Now, to combine all of these areas into a volume, simply integrate the function that
spits out all of these areas,

∫ d
c f(x, y)dy (a function in one variable, x) over the interval

[c, d]. The result is the average of these areas over the interval [c, d], times the length
of [c, d]: i.e. it’s the volume!

Of course, we can also slice our surface by setting y constant first, and then integrating
with respect to y: the picture will be the same. The upshot of all of this is that we can now
calculate integrals in R2 using only integrals in R1 : i.e. that∫

[a,b]×[c,d]
f(x, y)dA =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy.

The above concept of the integral as an “average” will give you the exact same conclu-
sion, as well. I generally prefer thinking of the integral as an average × the area of the thing
we’re integrating over, if only because it makes certain generalizations easier: i.e. using this
concept, it’s really easy to see that our above discussion for R2 generalizes completely to
Rn. For example, in R3, we can see that∫

[a,b]×[c,d]×[e,g]
f(x, y, z)dA =

∫ b

a

(∫ d

c

(∫ g

e
f(x, y, z)dz

)
dy

)
dx.
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2 x-Simple Regions

As well, if we want to integrate over regions that aren’t boxes, this method generalizes
beautifully! Let’s think about functions R2 → R for the moment. Suppose that we have a
region D of the form

D = {(x, y) : x ∈ [a, b], y ∈ [φ1(x), φ2(x)]};

i.e. D looks like

a b

ϕ1(x)

ϕ2(x)

Then, if we want to calculate the integral of f(x, y) over this region D, we’d want to perform
the same slicing-into-areas trick as before: i.e. we would want to find the integrals of f(λ, y)
over [φ1(λ), φ2(λ)] for every λ, and then we’d want to combine these areas into a volume
by integrating with respect to x. In other words, we have∫

D
f(x, y)dA =

∫ b

a

(∫ φ2(x)

φ1(x)
f(x, y)dy

)
dx.

We call such regions x-simple, because they are regions that we can define by constraining
x simply to an interval and then deriving curves that bound our choices of y. Similarly, a
y-simple region D is one of the form

D = {(x, y) : y ∈ [c, d], x ∈ [ψ1(y), ψ2(y)]};

i.e. where D looks like

a

b
ψ1(y) ψ2(y)
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We can calculate integrals over a y-simple region just like we did for x-simple regions:∫
D
f(x, y)dA =

∫ d

c

(∫ ψ2(y)

ψ1(y)
f(x, y)dx

)
dy.

Sometimes, we can express a region D as both a x-simple and y-simple region! I.e. the
upper-left quadrant of the unit circle can be expressed as both

{(x, y) : x ∈ [0, 1], y ∈ [0,
√

1− x2)]}, and {(x, y) : y ∈ [0, 1], x ∈ [0,
√

1− y2]}.

In regions where we can pull off this “two different descriptions” trick, we can often use
these two different descriptions to study integrals that would be otherwise impossible.

3 Change of Variables

Finally, to describe regions that are even more complicated than x-simple or y-simple re-
gions, we have the technique of change of variables. The concept of changing variables
is one we’ve ran into in single-variable calculus:

Theorem 1 (Change of variables, single-variable form) Suppose that f is a continuous
function over the interval (g(a), g(b)), and that g is a 1−1 continuous map with continuous
derivative from (a, b) to (g(a), g(b)). Then, we have that∫ g(b)

g(a)
f(x)dx =

∫ b

a
f(g(x)) · g′(x)dx.

The idea here, roughly, was the following: the integral of f over the interval (g(a), g(b)) is
the same as the integral of f ◦ g over the interval (a, b), as long as we correct for how g
“distorts space.” In other words, on the left (where g’s been applied to the domain (a, b)),
we’re integrating with respect to dx, the change in x: however, on the right, we’re now
integrating f ◦ g, and therefore we should integrate with respect to d(g(x)) = g′(x)dx.

So: in multiple variables, we want to have a similar theorem! Basically, given a contin-
uous function f : Rn → R, a domain R ⊂ Rn, and a differentiable map g : Rn → Rn, we
want a way to relate the integral of f over g(R) and the integral of f ◦ g over R.

How can we do this? In other words, how can we correct for how g “distorts space,”
like we did for our single-variable case? Well: locally, we know that small changes in the
vector x are measured by D(g(x)), the n×n matrix of partial derivatives of g. Specifically,
from Math 1b, we know that det(D(g(x))) measures the volume of the image of the unit
cube under the map D(g(x)). So, in a sense, this quantity – det(D(g(x))), the determinant
of the Jacobian of g – is telling us how much g is locally inflating or shrinking space at the
point x! So, we might hope that this is the correct quantity to scale by. As it turns out, it
is! Specifically, we have the following theorem:

Theorem 2 (Change of variables, multiple-variable form) Suppose that R is a region in Rn,
g is a 1−1 map with continuous partial derivatives that maps R to some region g(R) ⊂ Rn,
and that f is a continuous function. Then, we have∫

g(R)
f(x)dV =

∫
R
f(g(x)) · det(Dg(x))dV.
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This, as you may have noticed, is not precisely the theorem in your textbook. That
theorem reads as follows:

Theorem 3 (Change of variables, multiple-variable form) Suppose that R is a region in
Rn, g is a 1-1 map with continuous partial derivatives that maps g−1(R) to R, and that f
is a continuous function. Then, we have∫

R
f(x)dV =

∫
g−1(R)

f(g(x)) · det(Dg(x))dV.

The change between the two theorems lies in how you’re thinking of the integral you’ve
started with: you can consider it either as a integral where you’ve already got a good guess
for what your g-map will be (

∫
g(R) f(x)dV ), or you can think of it in the situation where

you don’t have an idea what your g-map is yet (
∫
R f(x)dV ).

If you use either of these results, you need to be very very careful to insure that your
map g is 1-1 on your region R! Otherwise, it’s possible that g−1 will “fold” parts of R on top
of each other, in such a way that the integral at the right will no longer be over something
that looks like R. For example, if your map g was the map (x, y) 7→ (x2, y2), and you were
to try applying this map to the integral∫

g([−1,1]×[0,1])
1 dV,

you’d get∫
g([−1,1]×[0,1])

1 dV =??

∫
[−1,1]×[0,1]

1 · det

(
2x 0
0 2y

)
dV =

∫ 1

−1

∫ 1

0
(4xy)dydx = 2,

even though ∫
g([−1,1]×[0,1])

1 dV =

∫
[0,1]2

1 dV =

∫ 1

0

∫ 1

0
dxdy = 1.

This is because the map g “folds” the region [−1, 1]× [0, 1] we were integrating over in half:
therefore, if we use change of variables to change the region we’re integrating over from
g([−1, 1] × [0, 1]) to [−1, 1] × [0, 1], we’d expect to see an “unfolding”, which would cause
our integral to double. (Which is precisely what we saw!)

4 Common variable changes.

There are three very common changes of variable, which we review here briefly:

Theorem 4 (Change of variables, polar:) Let γ : [0,∞) × [0, 2π) be the polar coördinates

map (r, θ) 7→ (r cos(θ), r sin(θ)). Then D(γ(r, θ)) =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
, det(D(γ(r, θ))) =

r, and we have ∫
γ(R)

f(x, y)dV =

∫
R
f(r cos(θ), r sin(θ)) · rdV,

for any region R ⊂ [0,∞)× [0, 2π), and any continuous function f on an open neigborhood
of R.
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In other words, if we have a region R described by polar coördinates, we can say that the
integral of f over γ(R) is just the integral of r·f(r cos(θ), r sin(θ)) over this region interpreted
in Euclidean coördinates. For example, suppose that R was the unit disk, which we can
express using our polar coördinates map as γ([0, 1] × [0, 2π)). Then, change of variables
tells us that the integral of f over the unit disk is just the integral of r · f(r cos(θ), r sin(θ))
over the Euclidean-coördinates rectangle [0, 1]× [0, 2π).

Cylindrical coördinates are similar:

Theorem 5 (Change of variables, cylindrical:) Let γ : [0,∞)× [0, 2π)×R be the cylindrical

coördinates map (r, θ, z) 7→ (r cos(θ), r sin(θ), z). Then D(γ(r, θ)) =

 cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

,
det(D(γ(r, θ))) = r, and we have∫

γ(R)
f(x, y)dV =

∫
R
f(r cos(θ), r sin(θ), z) · rdV,

for any region R ⊂ [0,∞)× [0, 2π)× (−∞,∞), and any continuous function f on an open
neigborhood of R.

Spherical coördinates are a bit trickier, but have a similar form:

Theorem 6 (Change of variables, spherical:) Let γ : [0,∞)× [0, π)× [0, 2π) be the cylindri-
cal coördinates map (r, ϕ, θ) 7→ (r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ)). Then D(γ(r, θ)) = cos(ϕ) −r sin(ϕ) 0

sin(ϕ) cos(θ) r cos(ϕ) cos(θ) −r sin(ϕ) sin(θ)
sin(ϕ) sin(θ) r cos(ϕ) sin(θ) r sin(ϕ) cos(θ)

, det(D(γ(r, θ))) = r2 sin(ϕ), and we

have ∫
γ(R)

f(x, y)dV =

∫
R
f(r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ)) · r2 sin(ϕ)dV,

for any region R ⊂ [0,∞) × [0, π) × [0, 2π) and any continuous function f on an open
neigborhood of R.

There are a few other coördinate transforms that will often come up:

• Various translations of space: i.e. maps (x, y, z) 7→ (x + c1, y + c2, z + c3). The
determinant of the Jacobian of such maps will always be 1.

• Various ways to scale space: i.e. maps (x, y) 7→ (λ1x, λ2y). The determinant of the
Jacobian of such maps will be the product of these scaling constants λ1 · . . . · λn.

• Various compositions of these maps: i.e. a translation map, followed by a spherical
coördinates map, followed by a scaling map. Using the chain rule, the determinant of
the Jacobian of any such composition of maps is just the product of the determinants
of the individual Jacobians.
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5 Examples

Next week, we’ll have many more examples of these techniques. For now, however, here’s
three worked examples to give you an idea of how integrals work in Rn.

Question 7 Choose two random numbers from [0, 1]. What is the average value of the
smaller of the two? In other words, what is the integral (average value)

1

Area ([0, 1]2)
·
∫∫

[0,1]×[0,1]

min(x, y)dA ?

Solution. First: notice that the area of [0, 1]2 is just 1, so 1
Area([0,1]2)

is just 1. So we can

just study the integral!
Using our discussion above, start by expressing this integral as two nested one-dimensional

integrals: ∫∫
[0,1]×[0,1]

min(x, y)dA =

∫ 1

0

(∫ 1

0
min(x, y)dx

)
dy.

With this done, let’s study the inner integral. Directly working with the function min(x, y)
seems difficult. However, for a given fixed value of y, notice that we can split our integral
into two parts (the integral from 0 to y and the integral from y to 1):∫ 1

0
min(x, y)dx =

∫ y

0
min(x, y)dx+

∫ 1

y
min(x, y)dx

Then, if we notice that min(x, y) is just x whenever x ≤ y (i.e. x is in our first part) and
is just y whenever x ≥ y (i.e. x is in our second part), we can replace the complicated
min(x, y)’s with just x and y: i.e.∫ 1

0
min(x, y)dx =

∫ y

0
min(x, y)dx+

∫ 1

y
min(x, y)dx

=

∫ y

0
xdx+

∫ 1

y
ydx

=
x2

2

∣∣∣y
0

+ xy
∣∣∣1
y

=
y2

2
+ y − y2

= y − y2

2
.
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Therefore, if we plug this into our nested integrals, we have that∫∫
[0,1]×[0,1]

min(x, y)dA =

∫ 1

0

∫ 1

0
min(x, y)dxdy

=

∫ 1

0

(
y − y2

2

)
dy

=
y2

2
− y3

6

∣∣∣1
0

=
1

3
.

So, if you take two random numbers in [0, 1] and look at the smaller of the two, the average
value you’d see is 1/3.

Question 8 Now, choose two random positive numbers so that their sum is between 0 and
1. What is the average value of the smaller of the two?

Solution. Similarly to before, we want to integrate min(x, y) over some region: however,
our region is now

D = {(x, y) : 0 ≤ x, 0 ≤ y, x+ y ≤ 1} = {(x, y) : y ∈ [0, 1], x ∈ [0, 1− y]}.

We can use this description of D to notice that it’s a right triangle, with sides given by the
lines x = 0, y = 0, x+ y = 1. So its area is just 1

2 , so 1
Area(D) = 2.

Now, again using this description of D, we can express our integral as the following
expression:

2 ·
∫∫

[0,1]×[0,1]

min(x, y)dA =

∫ 1

0

(∫ 1−y

0
min(x, y)dx

)
dy.

With this done, let’s study the inner integral. It’s now a bit more complicated! In
specific, notice that if we have y ≥ 1

2 , because x ∈ [0, 1− y], we will always have x < y: i.e.
min(x, y) = x. So, for y ≥ 1

2 , we have

∫ 1−y

0
min(x, y)dx =

∫ 1−y

0
xdx =

x2

2

∣∣∣∣∣
1−y

0

=
(1− y)2

2
=
y2 − 2y + 1

2
.

However, if y ≤ 1
2 , it’s possible that x > y or x < y, and we are led to perform the same

trick as before of splitting our integral into two pieces, one from 0 to y and the other from
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y to 1− y: ∫ 1−y

0
min(x, y)dx =

∫ y

0
min(x, y)dx+

∫ 1−y

y
min(x, y)dx

=

∫ y

0
xdx+

∫ 1−y

y
ydx

=
x2

2

∣∣∣y
0

+ xy
∣∣∣1−y
y

=
y2

2
+ (y − y2)− y2

= y − 3y2

2
.

Therefore, if we plug these results into our nested integrals, we get that

2 ·
∫∫

[0,1]×[0,1]

min(x, y)dA = 2 ·
∫ 1

0

∫ 1

0
min(x, y)dxdy

= 2 ·

(∫ 1/2

0

(
y − 3y2

2

)
dy +

∫ 1

1/2

(
y2 − 2y + 1

2

)
dy

)

= 2 ·

(y2
2
− y3

2

) ∣∣∣∣∣
1/2

0

+

(
y3

6
− y2

2
+
y

2

) ∣∣∣∣∣
1

1/2


= 2 ·

((
1

8
− 1

16

)
− 0 +

(
1

6
− 1

2
+

1

2

)
−
(

1

48
− 1

8
+

1

4

))
=

1

6

Therefore, if you take two random positive numbers such that their sum is ≤ 1 and you
look at the smaller of the two, you’ll get 1

6 on average.

Question 9 Choose a random point in the upper-right quadrant of the unit disk: i.e. a
random point (x, y) such that x, y ≥ 0, x2 + y2 ≤ 1. What is the average value of the
minimum of (x, y)?

Solution. We are looking for the average value of the function min(x, y) over this upper-
right quadrant of the unit disk, i.e.

1

area(part of unit disk)

∫
(part of unit disk)

min(x, y)dA.

Polar coördinates look like a good candidate for how we can find this integral! In
particular, if we apply the change of variables formula using the polar coördinate transform

9



g(r, θ) = (r cos(θ), r sin(θ)) to the above integral, we get∫
(part of unit disk)

min(x, y)dA =

∫ 1

0

∫ π/2

0
min(r cos(θ), r sin(θ)) · det(Dg) · dθdr

=

∫ 1

0

∫ π/2

0
min(r cos(θ), r sin(θ)) · r · dθdr.

Note that we can do because the polar-coördinate transform is 1−1 on the set [0, 1]×[0, π/2],
which is precisely the set that maps onto the upper-right quadrant of the unit disk.

With this done, we can simply integrate. First, notice that from 0 to π/4, sin(θ) ≤
cos(θ), and from π/4 to π, we have that cos(θ) ≤ sin(θ). Therefore, if we break our inner
integral into two parts, one going from 0 to π/4 and the other from π/4 to π/2, we have∫ 1

0

∫ π/2

0
rmin(r cos(θ), r sin(θ)) dθdr

=

∫ 1

0

(∫ π/4

0
rmin(r cos(θ), r sin(θ))dθ +

∫ π/2

π/4
rmin(r cos(θ), r sin(θ))dθ

)
dr

=

∫ 1

0

(∫ π/4

0
r2 sin(θ)dθ +

∫ π/2

π/4
r2 cos(θ)dθ

)
dr

=

∫ 1

0

(
r2(− cos(θ))

∣∣∣π/4
0

+ r2(sin(θ))
∣∣∣π/2
π/4

)
dr

=

∫ 1

0
r2

(
1−
√

2

2
−
√

2

2
+ 1

)
dr

= (2−
√

2)
r3

3

∣∣∣1
0

=
2−
√

2

3
.

Therefore, if we want the average value of min(x, y) over this upper-right quadrant, we
just have to divide our integral by the area of the upper-right quadrant, π/4. In other
words, we’ve just proven that the average value of min(x, y) is

8− 4
√

2

3π
,

which is roughly 1
4 .
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