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Recitation 9: Green’s Theorem
Week 9 Caltech 2013

1 Green’s Theorem: Motivation, Statement and Examples

Today’s lecture, like almost every lecture we've given this quarter, is about how we can
extend a concept from one-dimensional calculus to higher dimensions. Throughout this
course, we've already extended the concepts of limits, derivatives, several derivative tech-
niques, integrals, and several integral techniques from R! to R™; basically, whenever we’ve
seen anything in single-variable calculus, we’ve been able to extend it to R". Loosely speak-
ing, there’s really only one major theorem that we haven’t extended yet: the Fundamental
Theorem of Calculus, which stated that (for f : R — R a C! function)
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In other words, knowing the behavior of the derivative over an interval is equivalent to
knowing the function’s original values at the endpoints of that interval. This, you may
remember, was a remarkably powerful technique: in single-variable calculus, the FTC often
allowed us to transform knowledge of the derivative (often a far simpler thing than the
original function) over a region into the function’s actual behavior on the boundary of this
region, and vice-versa.

A natural question to ask, then, is whether we can extend this to higher dimensions.
Le. take a region R C R?, with boundary OR. Can we relate the behavior of a function on
OR to the behavior of some sort of derivative on all of R?

As it turns out, we can! This is precisely Green’s theorem; to state it formally, we first
make the following two definitions.

Definition. A simple closed curve 7 is a map [a, b] — R" such that
e v(a) =~(b),
e v has finite length, and

e 7 does not intersect itself: i.e. for any two points x # y € [a,b], y(z) = y(y) if and
only if x and y are the two endpoints a, b.

Example. The following illustrates some closed curves that are simple, and some closed
curves that are not simple:
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(simple closed curves) (not simple closed curves)

Definition. Suppose that a simple closed curve 7 is also the boundary of some region R.
We say that a curve is positively oriented if travelling along our curve in the direction
given by v keeps R on the “left” of the curve. Similarly, a parametrization is negatively
oriented if travelling along the curve keeps R on the “right.”

Example. For example, the parametrization v (t) = (cos(t),sin(t)) is a positively-oriented
parametrization with respect to the unit disk. This is because moving along the unit disk
using v keeps the unit disk always on our left. Similarly, the parametrization v_(t) =
(cos(t), —sin(t)) is negatively-oriented, because the unit disk is always on the right of our

parametrization.

(positive) (negative)

Theorem 1 (Green’s Theorem.) Suppose that R is some region in R? such that R’s bound-
ary s given by the curve C1, and that v is a positive parametrization of c1. Suppose that P
and Q are a pair of maps R? — R with continuous partial derivatives in an open neighbor-
hood of R. Then, we have the following equality
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2 Green’s Theorem: Applications

Why do we care about Green’s theorem? Well: from looking at its statement above, what
does it do? It takes a pair of functions P, and sends an integral involving them to an
integral involving their partials ‘?) nd ap ; as well, it transforms a line integral over some
curve C' into a integral over some region R ThlS suggests that we might want to use Green’s

theorem in the following situations:

1. If we’re integrating a pair of functions over some particularly awful curve, we might
want to use Green’s theorem to transform this integral into one over a region, in
the hopes that the expression %—g — 88—1; might become zero or at the least a simpler

expression.



2. Conversely, if we have a fairly awful region R, we might want to use Green’s theorem
to take us to a line integral, which can sometimes make our lives easier. One typical
example of this is the use of Green’s theorem to calculate the area of a region, which

is the following equation:
1
//1 dxdy = % xdy — ydz.
2 Je
R

The left-hand side is (by definition) the area of the region R; the right-hand side is

one possible pair of functions P, @ such that (?97 — %—5 is 1.

We illustrate these two uses with two examples:

Example. For any two constants a,b € R, and n € N, find the integral
?{ acos(z)dzx + bsin(y)dy,
ohy

where C, is a counterclockwise-oriented n-gon with side length 1, center at (0,0), and one
vertex on the z-axis.

Solution. So: this is (clearly) a case where our curve C;} is far too awful to integrate along.
Having no other option, we apply Green’s theorem, which tells us that (if R is the region
enclosed by our n-gon)
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=0.

Done!

Example. Find the area of the ellipse

.’E2 y2

Solution. As mentioned before, the area of any region R can be given by the integral
{%f 1 dzdy; so, if we choose P(x,y) = —y/2,Q(x,y) = x/2, we have % - %—5 =1, and thus
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where C' is the boundary curve of our ellipse: i.e. v : [0,27] — R? ~(t) = (acos(t), bsin(t)).
Calculating, we have
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— ;/0 (—bsin(t),acos(t)) - (—asin(t), bcos(t))dt
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It bears noting that we had many possible choices of P, ) above! Specifically, we could
have also chosen (Q = z, P = 0; in this case, we would have had

//1 dxdy :% xdy
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R

27
:/0 (0,acos(t)) - (—asin(t), bcos(t))dt
= /27r ab cos? (t)dt

0
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0
= abm.

This is the same answer! This is just an aside, to illustrate that you can have many different

choices of P, @ available to you such that %—8 — %—]; is equal to your desired expression.

The following example provides a slightly tricker area calculation, as well as a cautionary
tale about making sure to always check your boundary conditions when you're applying a
theorem:

Example. Find the area of the region R enclosed by the Lissajous curve v(t) = (cos(t), sin(3t)),
where t ranges from 0 to 2.
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Solution. When presented with a region R enclosed by a curve v, it’s really tempting to
simply directly apply our Green’s theorem for area result, which says that when v is a

simple closed curve oriented counterclockwise, we have

area(R) = // 1dA = L (—g,g) dry.
R

However, if we just directly apply this here, we’ll get that

/7 (_%’ g) dy = /027r <_Sin§3t)> Coz(t)> - (—sin(t), 3 cos(3t))dt

2m
= % /0 sin(3t) sin(t) + 3 cos(3t)(cos(t)dt.

By applying your angle-addition formulas
e cos(3t) = cos(t) cos(2t) — sin(t) sin(2t),
e sin(3t) = sin(t) cos(2t) + sin(2t) cos(t),

along with your double-angle formulas, we have that this is

T 2m
/ (—%, 5) dy = ;/0 sin(t)(sin(t) cos(2t) + sin(2t) cos(t)) + 3 cos(t)(cos(t) cos(2t) — sin(t) sin(2t))dt
.
= % /27r sin?(t) cos(2t) + sin(2t) sin(t) cos(t) + 3 cos?(t) cos(2t) — 3sin(t) cos(t) sin(2t))dt
0
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Um. So, this is clearly false: our curve, by visual inspection, contains more area than 0.
What went wrong? Well, our curve = is not a simple closed curve: it has self-intersections!
So: to fix that, we can break up our curve « into three parts:

e The part where 4’s parameter ¢ is restricted to the set [—7/3,7/3]. This is the far-
right part of our curve; here, v is counterclockwise-oriented, and we can thus find the
area enclosed by v by evaluating the integral

/3
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e The part where 4’s parameter ¢ is restricted to the set [47/3, 57/3]. This is the far-left
part of our curve; here, v is also counterclockwise-oriented, and we can thus find the
area enclosed by v by evaluating the integral

5m/3
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e The part where v’s parameter ¢ is restricted to the set|[r /3,27 /3|U[47 /3, 57/3]. Here,
v is clockwise-oriented! Therefore, to find the area enclosed by gamma, we need to
take the negative of this signed area, which is

1 [27/3 5m/3 \/?;
= / 2 cos(2t) + cos(4t)dt + = / 2cos(2t) + cos(4t)dt = ... = —.
2 /3 4n/3 4

Notice that we’ve used a curve ~ here that was piecewise defined: this is completely
OK! The only thing you need to check is that the curve is a simple closed one and
counterclockwise-oriented: once you’ve done that, it can be defined however you like.

Summing these three parts gives us that the area enclosed by our curve is 3v/3/2.
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