
MATH 1D – FINAL REVIEW

INSTRUCTOR: PADRAIC BARTLETT

Abstract. These are the lecture notes from the final review for Ma1d.

1. A Quick List of What We’ve Discussed

We’ve covered a massive amount of material thus far through this course; here’s
a list (with quick definitions and restatements) of what all exactly we’ve done.

(1) Sequences:
• Their definition: a sequence is just a list of numbers (or functions,

or complex numbers, or whatever you wish) indexed by the natural
numbers.

• When they converge: basically, we developed three methods for deter-
mining when a sequence converges:

– The definition of convergence: a sequence {an} converges to a
value l if for every ε > 0, there is a δ > 0 such that |an − l| < ε.

– The squeeze/two-policeman/sandwich theorem: if an ≤ bn ≤ cn
and the sequences an, cn both converge to the same limit, then
bn has no choice but to come along as well.

– Passing to the continuous case: if f is a function such that
f(n) = an and limx→∞ f(x) = l, then limn→∞ an = l also.

(2) Series:
• Their definition: an infinite series is just the sum

∑∞
n=1 an; i.e. the

limit limN→∞
∑N
n=1 an of the partial sums of these an’s.

• When they converge: we developed a number of tests to tell when a
series converges, depending on the signs of its summands.
If the series consists entirely of positive numbers:

– The First Comparison Test: If
∑
an ≤

∑
bn and the sum

∑
bn

converges, then so does
∑
an.

– The Second Comparison Test: If limn→∞
an

bn
= c 6= 0, then the

sum
∑
bn converges if and only if the sum

∑
an converges.

– The Ratio Test: If limn→∞
an+1
an

exists and is less than 1, the sum∑
an converges; if it’s greater than 1, the sum

∑
an diverges; if

it is equal to 1 or doesn’t exist, then you should try a different
test.

– The Integral Test: if f is a decreasing function such that f(n) =
an, then the integral

∫ n
1
f(n) exists iff the sum

∑
an converges.

If the series consists of terms that alternate sign:
– Leibniz’s Theorem: if the terms an alternate sign and converge

to 0, then their sum
∑
an converges.

If all else fails:
1
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– The Cauchy Criterion: if the limit limm,n→∞ |an+an+1+. . . am| =
0, then the sum

∑
an converges. You will almost certainly not

have to use this; if you find yourself doing so, go back and try
something else instead. The virtue of this test lies in that it
applies to everything – functions, complex numbers, and pretty
much anything you can define an absolute value for – so we often
used it to prove many of our later (and more useful) tests.

• Absolute convergence: a series
∑
an converges absolutely if and only

if the series
∑
|an| converges. We can change the order of summation

of an absolutely convergent series to whatever we wish (a property
that stands in stark contrast to the case of non-absolutely convergent
series, like

∑ (−1)n

n .)
(3) Sequences and Series of Functions:

• Pointwise convergence: a sequence fn of functions converges pointwise
to a function f if and only if limn→∞ fn(x) = f(x), for all relevant x.

• Uniform convergence: a sequence fn of functions converges uniformly
to a function f if and only if for every ε > 0, there is a N such that for
all n > N , we have that |fn(x)−f(x)| < ε, for all relevant x. Visually,
a sequence of functions fn converges to a function f if and only if
the fn’s are eventually contained within an ε-tube drawn around f ,
for any ε > 0. This concept was more difficult, conceptually, then
the idea of pointwise convergence; but the following theorems helped
motivate why we cared about this:

– Uniform convergence implies pointwise convergence; i.e. if a
sequence of functions converge uniformly to a function f , then
they must converge pointwise to this function as well. (note that
the converse is quite false, as you all showed multiple times on
HW #3.

– Uniform convergence preserves continuity: if a sequence fn of
continuous functions converges to some function f , then f must
be continuous as well.

– Uniform convergence preserves the integral: if a sequence fn of
integrable functions converges to some function f , then limn→∞

∫ b
a
fn(x) =∫ b

a
f(x).

– Uniform convergence kind-of preserves differentiability: if a se-
quence fn of differentiable functions converges to some function
f , *and* their derivatives f ′n converge uniformly to some con-
tinuous function, then limn→∞ f ′n = f ′ uniformly.

(4) Power series:
• Their definition: a power series around the point c is merely a series

of functions of the form
∑
an(x− c)n.

• Massively Useful Theorem: If a power series
∑
anx

n converges at some
point x0, then:

–
∑
anx

n converges uniformly on the interval [−a, a], for any a <
|x0|,

– the series
∑
nanx

n−1 converges uniformly on the interval [−a, a]
as well, and

– d
dx (
∑
anx

n) =
∑
nanx

n−1.
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So, in other words, we have the following: if f(x) =
∑
anx

n is a power
series convergent over some region, then

– f ′(x) =
∑
nanx

n−1, and
–
∫
f(x)dx =

∑ anx
n+1

n+1 , up to a constant C.
(5) Complex Power Series:

• First, recall the basic properties of the complex numbers, which are
quickly gone over in a list in week 6. Basically, they’re what you get
when you throw in

√
−1 into the real numbers, you can factor all

polynomials into roots, and you can write any complex number in the
form reiθ, where r is the distance of the number from the origin and
θ is angle made by the line 0, z and the positive x-axis.

• A complex power series, then, is just a power series
∑
an(z − c)n,

where the an’s and c are complex numbers.
• Then, basically, everything that was true about real power series fol-

lows for complex power series! In particular, we have (again) that if
f(z) =

∑
anz

n is a complex power series convergent over some region,
then

– f ′(z) =
∑
nanz

n−1, and
–
∫
f(z)dx =

∑ anz
n+1

n+1 , up to a constant C.
• Motivated by these concepts, we decided to use power series to define

the functions

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+
z9

9!
− . . . ,

cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+
z8

8!
− . . . , and

ez = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+
z5

5!
+ . . . ,

and saw that Euler’s formula,

ez = cos(z) + i sin(z)

holds.
• Finally, we finished things up by using all of this machinery (plus the

Weierstrass factorization theorem, a very large deus ex machina we
discussed on Thursday, wk. 6 – you definitely don’t need to use this!)
to prove that

∞∑
n=1

1
n2

=
π2

6
.

So: up through week 6, that’s everything we’ve covered in this course. (The
last two lectures aren’t necessary for the final, though Tuesday, wk. 7’s lecture will
make problem 6 far easier than it is without attending.)

2. Example Problems

To help illuminate some of the above ideas, here are five example problems that
were shortlisted for your final, one from each section:
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Example 2.1. Let

an :=

(
n∑
k=1

1
k

)
− log(n).

Does the sequence of an’s converge?

Proof. So: first, note that because

1
n+ 1

≤
∫ n+1

n

1
x
dx ≤ 1

n
,

we have

(?)
1

n+ 1
≤ log(n+ 1)− log(n) ≤ 1

n
,

for every n ≥ 1.
So: why do we care? Well, look at the elements an. We can write

an+1 =

(
n+1∑
k=1

1
k

)
− log(n+ 1)

=

(
n∑
k=1

1
k

)
+

1
n+ 1

− log(n+ 1)

=

(
n∑
k=1

1
k

)
− (log(n)− log(n)) +

1
n+ 1

− log(n+ 1)

=

(
n∑
k=1

1
k

)
− log(n)−

(
log(n+ 1)− log(n)− 1

n+ 1

)
.

But, by (?), we know that
(

log(n+ 1)− log(n)− 1
n+1

)
is greater than 0, for every

n ≥ 1; so the an’s form a nonincreasing sequence. As well, because
∫ n+1

n
1
xdx ≤

1
n

holds for every n, we have that
N∑
n=1

∫ n+1

n

1
x
dx ≤

N∑
n=1

1
n

⇒
∫ N+1

1

1
x
dx ≤

N∑
n=1

1
n

⇒ log(N + 1) ≤
N∑
n=1

1
n

⇒ 0 ≤
N∑
n=1

1
n
− log(N + 1)

⇒ 0 ≤
N+1∑
n=1

1
n
− log(N + 1);
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so all of these an’s are positive. So they form a nondecreasing positive sequence; so
they converge!

For more information on the number that this sequence converges to, check out
the Wikipedia entry for the Euler-Mascheroni constant, which has a lot of cool
information. Amongst other things, it’s still an open question in mathematics to
decide if this constant is rational! Cool stuff. �

Example 2.2. Does the series
∞∑
n=2

1
(log(n))log(n)

converge?

Proof. Lacking any better ideas, we’ll use the integral test, and thus try to show
that ∫ ∞

2

1
(log(x))log(x)

dx

exists. This looks horrible; so what can we do? Well; perhaps we can integrate by
substitution? The only immediately sane choice here is u = log(x); in this situation,
we have that du = 1

xdx, or in other words du = 1
eu dx; i.e eudu = dx. Substiution

now yields ∫ ∞
log(2)

eu

uu
du;

which, at first glance, doesn’t seem much better. So how can we tackle this? Well
– how about the integral test again? (Madness; I know.) Specifically, the integral
test tells us that this integral converges iff the sum

∞∑
n=1

( e
n

)n
converges. But for all n ≥ 3, we have that

(
e
n

)n ≤ ( e3)n. Thus, because the series
∞∑
n=1

(e
3

)n
is geometric, it forces the series

∑∞
n=1

(
e
n

)n to converge by the comparison test;
so by our two above uses of the integral test, we then have that

∫∞
log(2)

eu

uu du and∑∞
n=2

1
(log(n))log(n) exist! So we’re done. �

Example 2.3. Find a sequence of piecewise continuous functions fn that converge
pointwise to the function

f(x) :=
{

1, if x /∈ Q and x ∈ [0, 1],
0, otherwise.

Can any such sequence converge uniformly to f?

Proof. So: take

fn(x) :=

 0, x of the form p
m , where m ≤ n and p ∈ Z

1, if x is in [0, 1] and not of the form above,
0, x /∈ [0, 1].

http://en.wikipedia.org/wiki/Euler–Mascheroni_constant
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These functions all have only finitely many discontinuities; so they are piecewise
continuous. But their pointwise limit is clearly f , as fn(pq ) is 1 for any n ≥ q, and
fn(x) = 0 for any irrational x.

As for uniform convergence: we claim that no such sequence of functions can
hope to converge uniformly to f . To see why, recall the definition of uniform
convergence: it says that for any ε > 0 there is a n such that |fn(x)− f(x)| < ε for
all x. So, choose ε = 1

8 here, say; then the functions fn have to be within 1/8 of 0
at every rational point in [0, 1] and within 1/8 of 1 at every irrational point in [0, 1],
for sufficiently large n. But this means that the fn’s can be continuous nowhere in
[0, 1], as in any neighborhood of any point x ∈ [0, 1], they are both greater than 7/8
and less than 1/8. In particular, the fn cannot be piecewise continuous functions;
so we’re done! �

Example 2.4. Find the sum

x2

2
− x3

3 · 2
+

x4

4 · 3
− x5

5 · 4
+ . . . ,

for any x ∈ (−1, 1).

Proof. So: notice first that the derivative of the above is just

2
x

2
− 3

x2

3 · 2
+ 4

x3

4 · 3
− 5

x4

5 · 4
+ . . . = x− x2

2
+
x3

3
− x4

4
+ . . . ,

which is simply the Taylor series for log(1 + x) in the interval (−1, 1).
So: this tells us that our above power series is just∫

log(1 + x)dx =
∫

log(u)du

= u log(u)− u+ C

= (x+ 1) log(x+ 1)− (x+ 1) + C.

To solve for C, just plug in x = 0; as the above power series is identically 0 at 0,
we then have that

(0 + 1) log(0 + 1)− (0 + 1) + C = 0
⇒ C = 1,

and thus that

(x+ 1) log(x+ 1)− x =
x2

2
− x3

3 · 2
+

x4

4 · 3
− x5

5 · 4
+ . . . .

So we’re done! �

Example 2.5. Consider the three sums

(A) :=
∞∑
n=1

zn

n2
, (B) :=

∞∑
n=1

zn

n
, (C) :=

∞∑
n=1

zn.

Show that (A) converges for every point z on the unit circle, (B) converges for some
points on the unit circle, but not for all such points, and (C) diverges at any point
on the unit circle.
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Proof. So: first note that any point z on the unit circle, because its distance from
the origin is 1, satisfies |z| = 1, and thus can be written in the form z = eiθ, for
some angle θ.

Given this: examine (A) first, and try using the Cauchy criterion. If |z| = 1, we
have that the limit

lim
m,n→∞

∣∣∣∣ zmm2
+

zm+1

(m+ 1)2
+ . . .+

zn

n2

∣∣∣∣ ≤ lim
m,n→∞

∣∣∣∣ zmm2

∣∣∣∣+
∣∣∣∣ zm+1

(m+ 1)2

∣∣∣∣ . . .+ ∣∣∣∣znn2

∣∣∣∣
≤
∞∑
n=m

|zn|
n2

=
∞∑
n=m

1
n2
,

which goes to 0 asm goes to infinty (as
∑

1
n2 converges.) Thus, the Cauchy criterion

tells us that this series converges for any z on the unit circle!
For (B): trivially, letting z = 1 makes it so that this diverges, as it’s just the

harmonic series; similarly, letting z = −1 makes the series converge, as it’s just the
alternating harmonic series, which converges by Leibniz.

For (C): take any z with |z| = 1. Then the terms zn all also have magnitude
1, and thus limn→∞ zn is not equal to zero! But this means that this sum cannot
possibly converge (as its terms never “settle down” as n grows large.) �
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