MATH 1D, WEEK 2 - CAUCHY SEQUENCES, LIMITS
SUPERIOR AND INFERIOR, AND SERIES

INSTRUCTOR: PADRAIC BARTLETT

ABSTRACT. These are the lecture notes from week 2 of Mald, the Caltech
mathematics course on sequences and series.

1. LIMITS SUPERIOR AND INFERIOR

So: most of the definitions and theorems we’ve developed so far for sequences
are centered around the concept of convergence — we have lots of ways of talking
about when things converge, where they converge to, and under what conditions
they will be forced to converge.

However, when we’re confronted with a divergent sequence, it is sometimes useful
to be able to say more about it than just “it doesn’t converge!” For example, the
sequences

0,1,0,1,0,1,0,1,0,1,0,1,...
1213141516

3'3'4°4’5’5°6° 6’77

both diverge, and yet both exhibit very clear behaviors at infinity — specifically,
both sequences seem to “tend” to both 0 and 1 at infinity. The following definition
helps us offer a canonical way of talking about such limiting behaviors at infinity,
even when looking at such divergent sequences:

Definition 1.1. For a sequence {ay}, set z,, = sup{a,, : m > n}. We then define
the limit superior of a, as

limsupa, = lim z,.
n—oo n—oo

Similarly, if we set y,, = inf{a,, : m > n}, we can then define the limit inferior of
Gy as

liminfa, = lim y,.
n—0oo n—oo

Example 1.2. If {a,} is the sequence given by
0,1,0,1,0,1,0,1,0,1,0,1,...

then for any n we have that
sup{am;, :m >n} =1,
inf{a,, : m >n} =0,
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and thus that

limsupa, = 1,liminf a, = 0.

n—00 n— oo

Example 1.3. If {a,} is the sequence given by
1213141516

373'4°4’5°5°6°6’7 7

then for any n we have that

k-1
1> sup{am:m>n} > — for any sufficiently large k,
because every other entry in the sequence {a, } is of the form %, where k increases
with n. Consequently, we have that limsup,,_, ., a, = 1! Similarly, for any n we
have that

1
0 <inf{am, :m >n} < o for any sufficiently large k,
and thus that liminf,, .. a, = 0.

So: much as with normal limits, we have a number of useful conditions as to
when the limits superior and inferior exist. We state and prove these all below:

Theorem 1.4. If{a,} is a bounded sequence, thenliminf, . a, andlimsup,,_, . an
both exist.

Proof. Note that for every n, we have that
Xy = sup{a, : m >n} > x,11 :=sup{a, :m > n+ 1},

and thus that the sequence of supremums {z,} is nonincreasing. As well, because

{an} is a bounded sequence, the z/,s are also bounded; combining these two results

then tells us that {z,} is a convergent sequence — i.e. that limsup,,_, ., a, exists!
Similarly, by noting that

Yn = inf{an, :m >n} <z,pyr =inf{a, :m>n+1},

we have that the y,,’s form a nondecreasing bounded sequence, and thus also con-
verge - i.e that liminf, . a, exists as well. [l

Theorem 1.5. lim,_,« a, exists if and only if liminf,,_, a, = limsup,,_, ., an.

Proof. Suppose first that lim, . a, exists, and furthermore is equal to some .
Then, by definition, we have that for any € > 0, there is some N such that for every
n > N, a, is within € of [.

But this means that (in particular) the biggest of all of the a,’s with n > N has
to be within e of [ — i.e that sup{a,, : m > n} must be within € of I.

But this is literally the definition of the statement

lim sup{a,, : m >n} =1,
n—oo
which, in other words, is just the statement

limsupa, = 1.

n—oo
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So the limit superior exists. A completely identical argument (just replace the inf’s
with sup’s above) shows that the limit inferior exists as well; so we have shown one
direction of our “if and only if” statement.

To prove the other direction, assume now that liminf, . a, = limsup,,_, ., an.-
What happens then?

Well — we have, for every a,, the relation

inf{a,, : m > n} <a, <sup{a,, : m >n}.

Thus, by the squeeze theorem for sequences, we have that lim, .., exists and is
equal to both the limsup and lim inf. O

2. CAUCHY SEQUENCES

Definition 2.1. We say that a sequence is Cauchy if and only if for every ¢ > 0
there is a natural number N such that for every m,n > N

|am — an| < €.

You can think of this condition as saying that Cauchy sequences “settle down”
in the limit —i.e. that if you look at points far along enough on a Cauchy sequence,
they all get fairly close to each other.

So: a priori, this definition looks to be somewhat different than our earlier
definition of convergence — in particular, the definition of Cauchy makes no reference
to any sort of “limit point,” whereas the notion of a sequence having a limit point
is key to the idea of convergence. But it seems plausible that these definitions
might be equivalent — after all, both conditions are basically ways of saying that a
sequence “stops moving at infinity.” This actually turns out to be the case, as the
next theorem states:

Theorem 2.2. A sequence is Cauchy if and only if it converges.

Proof. Suppose that {a,} is a sequence that converges to some value I; then, by
definition, we have that

Ve >0,AN e Ns.t Vn > N, |a, — | <e.

So, in particular, if we pick any m,n both larger than N, we have that both
lan, — 1] < € and |a,, — 1] < e. Adding these two results together tells us that

lam — 1| + |an — 1] < 2¢
=|am — U + |l — an| < 2
=lam — L +1—ay| < 2e
=|am — an| < 2€,

(where the above implications follow from the triangle inequality and simple alge-
braic manipulations.)

But this is precisely the condition that {a,} is Cauchy! So we have that all
convergent sequences are Cauchy.

To see the other direction — suppose that {b,} is a Cauchy sequence. We seek
now to show that this sequence converges.
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To do this: notice first that by definition, we have that for every € > 0 there is
a natural number N such that for every m,n > N

[br, — bn| < e.
In particular, if we let e = 1 and n = N, we have that
Ym > N, by —bn| <1=Vm > N, |b,| <1+ |bn|;

in other words, that the values of b,, are bounded, for all n > N. However, because
the set {b1,bo,...bx} is a finite set, we know that it too is bounded, say by some
constant C. By taking the larger of these two bounds, we have that in fact the
entire sequence {b,} is bounded — thus, by our earlier theorems, we know that it
has a convergent subsequence! Denote this convergent subsequence by {b,, }, and
call the number that it converges to .

We claim that (in fact) the entire sequence {b,} converges to I. To see this, we
just have to note the following two things:

(1) because limg_,o0 by, = I, we know that
Ve > 0,3N; € N s.t Vng > Ny, by, — 1| <€
(2) because the sequence {b,} is Cauchy, we know that
Ve > 0,3dNy € N s.t Vn,m > Na, |b,, — b,| < €.

So, in particular, if N = max{Ny, Ny}, for every ni, m > N we have that |b,, —I| <
e and |by, — by, | < e. Adding these two equations together gives us that
[br, — U + b — b, | < 26
=|bn, — 14 by — by, | < 2
=|bm — 1] < 2,

(where the above implications follow from the triangle inequality and simple alge-
braic manipulations.)

But this is the definition of convergence! So we have that the sequence {b,}
converges as claimed. O

The following example illustrates why the Cauchy criterion is sometimes useful,
as it can be much easier to show that certain things are Cauchy than to show that
they converge — in particular, if we don’t know where a sequence converges to, it
can be much easier to show that it’s Cauchy than to show it converges.

Example 2.3. Let
"1
=
k=1

Does a,, converge?
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Proof. So: we claim that {a,} is in fact Cauchy. To see this: simply notice that
for any m,n > N where m > n
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Thus, if N > %, we have that for any m,n > N,

|am — an| < €.

2/e

But this just means that our sequence is Cauchy! So, by the above theorem, it

converges. O
3. SERIES AND SUMS

So: with the above example in mind, we now turn from general sequences to the
study of series and infinite sums. We define the concept of an “infinte sum” below:

Definition 3.1. A sequence is called summable if the sequence {s,}%2 ; of partial
sums

Spi=ai+...an

converges. If it does, we then call the limit of this sequence the sum of the a,,, and
denote this quantity by writing

o0
E Q.
n=1

We first illustrate this definition by a pair of examples:
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Example 3.2. For any r € (—1,1), does the sum
o0

>

n=0
converge? If so, what does it converge to?
Proof. So: this can be done by simply performing the following algebraic trick: if
we denote the partial sums 7° + 7! + 72 + ... 7" by the symbols s,,, we have that

Sp=147rr24+ . "
resy, =144 et

=5, —rs, =1—r"T!
=s5,(1—r)=1—r"H
1 — pntl
=8, =—

1—-7r

1 —pntt 1
= lim s, = lim = .
n—oo n—oo 1 —1 1—7r

But the limit of these partial sums is, by definition, the infinite sum of the r™’s! So

this sum converges — specifically, it converges to 1ir. O

Example 3.3. Does the sum
>t
n
n=1
converge?

Proof. This sum, in fact, does not converge! To see this, simply note that if s,
denotes the partial sums 1 + % + ...+ L, we have that

n?

i11>/n1d log(n)
Sp = S— > —dz = log(n),
P k 1 T &

and thus that

lim s, > lim log(n) = oo,

n—oo n—oo
and so (in particular) does not converge. O
So: because series are a special type of sequences, it stands to reason that all of

our original theorems on sequences should have a nice interpretation in the language
of infinte sums. We describe two such quick results here:

Lemma 3.4. (Cauchy criterion) A sequence {an} is summable if and only if

lim J|an+any1+...+am| =0

m,n— oo

Proof. Just place the sequence {> ;_; ar}52; into the definition of a Cauchy se-
quence, and apply our earlier theorem that says that sequences are Cauchy if and
only if they converge. O

Theorem 3.5. (Vanishing criterion) If {a,} is summable, then lim, . a, = 0.
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Proof. Let m = n+ 1 in the limit lim,, »— 00 |@n + @41 + - .. + | = 0, which (by
the above) is equivalent to summability. ([

Theorem 3.6. (Boundedness criterion:) Suppose that {a,} is a sequence of non-
negative numbers such that the collection of all partial sums Y _, ay is bounded.
Then {a,} is summable.

Proof. So: because the a,, are all nonnegative, we have that the sequence {3, _, a,}
is nondecreasing. By assumption, it’s also bounded; so it must converge! ([

These results, admittedly, are pretty trivial, and aren’t really “new” ideas. The
following theorem, however, is a tool that’s markedly more powerful than anything
we have in the world of just general sequences:

Theorem 3.7. (First Comparison Test:) Suppose that {a,} and {b,} are sequences
such that0 < a, < by, for alln. Then {a,} is summable if {b,} is summable.

Proof. So: again, because the a,, are positive, the sequence of partial sums {> ", _; a, }
is nondecreasing. As well, because

n n o0
Z a, < an < an = some fixed constant | < oo,
k=1 k=1 k=1
the sequence of partial sums is bounded; so it converges! ([l

This test can be thought of as a weirder form of the squeeze theorem — in that to
show that a sequence converges, we merely need to show that it is termwise positive
and less than another sequence that converges, not that it is pinched by a pair of
sequences that converge to the same place! In fact, most of the time when we apply
the comparison test, we will be bounding Y. a,, above by a sum that converges
to a value much large than >~° a,,. Some examples follow below:

Example 3.8. Let

2
p = c——— -
2" — sin(n)
Is a,, summable?
Proof. Well,
2 < 2 < 2 4 1
Ap = " ~ ~ =44 —,
27 —sin(n) — 27 —1 — 2n—1 2n
and >0 4. =43 oL =4.1=4 converges; thus, by the first comparison
test, so does Y. ay,. O
Example 3.9. Let
3n>
ap = ———
4nt —1
Is a,, summable?
Proof. Well,
3n? 3m* 31
pn = ——F Z R
dnt —1 ~ 4n* 4 n

© 3.1 _3. 50 1 3 ) oo
and ) " 5 =35> -, diverges; as a result, so does ) " ap. O
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As suggested by its name, there is another comparison test beyond the first
comparison test, which we describe below:

Theorem 3.10. (Second Comparison Test:) Suppose that {a,} and {b,} are a
pair of positive sequences such that lim, ., 3= ewists and is equal to some ratio
¢ # 0. Then {an} is summable if and only if {b,} is summable.

Proof. Note first that because ¢ # 0, we have that both the limits lim,, Z—: =c
and lim,, . 2 = % exist. Thus, without any loss of generality, if we want to show
that {a,} is summable if and only if {b,} is summable, we can just assume that
that {b,} is summable, and show that {a,} is consequently summable (as by our
argument above, they’re completely interchangeable.)

So: because lim,,_, ‘g—: exists, we have (by definition) that there is some N such

that for all n > IV,

Z—n§2c

n

=a, < 2cb,

So: because the a,,’s are positive and the sequence > 2¢b,, = 2¢ . b,, converges,
the first comparison test tells us that the sum Y °° a,, must also converge! This
completes our proof. O

We conclude with a quick example of the use of this theorem:

Example 3.11. Let a,, = ("Inl)z. Is {a,} summable?

: _ m?
Proof. Well, if b,

4qn
3
_a, o, fD . n+1\°
lim — = lim —5— = lim =1;

4’!L
so, by the second comparison test, {a,} is summable if and only if {b,} is. But

(’I’L)3 3n 3 n
< =(2) ,
qn T 4n 4

which we know to be summable; so by the first comparison test, {b,,} is summable!
Consequently, {a,} is summable as well. O
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