
MATH 1D, WEEK 2 – CAUCHY SEQUENCES, LIMITS
SUPERIOR AND INFERIOR, AND SERIES

INSTRUCTOR: PADRAIC BARTLETT

Abstract. These are the lecture notes from week 2 of Ma1d, the Caltech

mathematics course on sequences and series.

1. Limits Superior and Inferior

So: most of the definitions and theorems we’ve developed so far for sequences
are centered around the concept of convergence – we have lots of ways of talking
about when things converge, where they converge to, and under what conditions
they will be forced to converge.

However, when we’re confronted with a divergent sequence, it is sometimes useful
to be able to say more about it than just “it doesn’t converge!” For example, the
sequences
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both diverge, and yet both exhibit very clear behaviors at infinity – specifically,
both sequences seem to “tend” to both 0 and 1 at infinity. The following definition
helps us offer a canonical way of talking about such limiting behaviors at infinity,
even when looking at such divergent sequences:

Definition 1.1. For a sequence {an}, set xn = sup{am : m ≥ n}. We then define
the limit superior of an as

lim sup
n→∞

an = lim
n→∞

xn.

Similarly, if we set yn = inf{am : m ≥ n}, we can then define the limit inferior of
an as

lim inf
n→∞

an = lim
n→∞

yn.

Example 1.2. If {an} is the sequence given by

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .

then for any n we have that

sup{am : m ≥ n} = 1,

inf{am : m ≥ n} = 0,
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and thus that

lim sup
n→∞

an = 1, lim inf
n→∞

an = 0.

Example 1.3. If {an} is the sequence given by
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then for any n we have that

1 ≥ sup{am : m ≥ n} ≥ k − 1
k

, for any sufficiently large k,

because every other entry in the sequence {an} is of the form k−1
k , where k increases

with n. Consequently, we have that lim supn→∞ an = 1! Similarly, for any n we
have that

0 ≤ inf{am : m ≥ n} < 1
k
, for any sufficiently large k,

and thus that lim infn→∞ an = 0.

So: much as with normal limits, we have a number of useful conditions as to
when the limits superior and inferior exist. We state and prove these all below:

Theorem 1.4. If {an} is a bounded sequence, then lim infn→∞ an and lim supn→∞ an
both exist.

Proof. Note that for every n, we have that

xn := sup{am : m ≥ n} ≥ xn+1 := sup{am : m ≥ n+ 1},

and thus that the sequence of supremums {xn} is nonincreasing. As well, because
{an} is a bounded sequence, the x′ns are also bounded; combining these two results
then tells us that {xn} is a convergent sequence – i.e. that lim supn→∞ an exists!

Similarly, by noting that

yn := inf{am : m ≥ n} ≤ xn+1 := inf{am : m ≥ n+ 1},

we have that the yn’s form a nondecreasing bounded sequence, and thus also con-
verge - i.e that lim infn→∞ an exists as well. �

Theorem 1.5. limn→∞ an exists if and only if lim infn→∞ an = lim supn→∞ an.

Proof. Suppose first that limn→∞ an exists, and furthermore is equal to some l.
Then, by definition, we have that for any ε > 0, there is some N such that for every
n > N , an is within ε of l.

But this means that (in particular) the biggest of all of the an’s with n > N has
to be within ε of l – i.e that sup{am : m ≥ n} must be within ε of l.

But this is literally the definition of the statement

lim
n→∞

sup{am : m ≥ n} = l;

which, in other words, is just the statement

lim sup
n→∞

an = l.
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So the limit superior exists. A completely identical argument (just replace the inf’s
with sup’s above) shows that the limit inferior exists as well; so we have shown one
direction of our “if and only if” statement.

To prove the other direction, assume now that lim infn→∞ an = lim supn→∞ an.
What happens then?

Well – we have, for every an, the relation

inf{am : m ≥ n} ≤ an ≤ sup{am : m ≥ n}.

Thus, by the squeeze theorem for sequences, we have that limn→∞ exists and is
equal to both the lim sup and lim inf. �

2. Cauchy Sequences

Definition 2.1. We say that a sequence is Cauchy if and only if for every ε > 0
there is a natural number N such that for every m,n ≥ N

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down”
in the limit – i.e. that if you look at points far along enough on a Cauchy sequence,
they all get fairly close to each other.

So: a priori, this definition looks to be somewhat different than our earlier
definition of convergence – in particular, the definition of Cauchy makes no reference
to any sort of “limit point,” whereas the notion of a sequence having a limit point
is key to the idea of convergence. But it seems plausible that these definitions
might be equivalent – after all, both conditions are basically ways of saying that a
sequence “stops moving at infinity.” This actually turns out to be the case, as the
next theorem states:

Theorem 2.2. A sequence is Cauchy if and only if it converges.

Proof. Suppose that {an} is a sequence that converges to some value l; then, by
definition, we have that

∀ε > 0,∃N ∈ N s.t ∀n > N, |an − l| < ε.

So, in particular, if we pick any m,n both larger than N , we have that both
|an − l| < ε and |am − l| < ε. Adding these two results together tells us that

|am − l|+ |an − l| < 2ε

⇒|am − l|+ |l − an| < 2ε

⇒|am − l + l − an| < 2ε

⇒|am − an| < 2ε,

(where the above implications follow from the triangle inequality and simple alge-
braic manipulations.)

But this is precisely the condition that {an} is Cauchy! So we have that all
convergent sequences are Cauchy.

To see the other direction – suppose that {bn} is a Cauchy sequence. We seek
now to show that this sequence converges.
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To do this: notice first that by definition, we have that for every ε > 0 there is
a natural number N such that for every m,n ≥ N

|bm − bn| < ε.

In particular, if we let ε = 1 and n = N , we have that

∀m ≥ N, |bm − bN | < 1⇒ ∀m ≥ N, |bm| < 1 + |bN |;

in other words, that the values of bn are bounded, for all n ≥ N . However, because
the set {b1, b2, . . . bN} is a finite set, we know that it too is bounded, say by some
constant C. By taking the larger of these two bounds, we have that in fact the
entire sequence {bn} is bounded – thus, by our earlier theorems, we know that it
has a convergent subsequence! Denote this convergent subsequence by {bnk

}, and
call the number that it converges to l.

We claim that (in fact) the entire sequence {bn} converges to l. To see this, we
just have to note the following two things:

(1) because limk→∞ bnk
= l, we know that

∀ε > 0,∃N1 ∈ N s.t ∀nk > N1, |bnk
− l| < ε.

(2) because the sequence {bn} is Cauchy, we know that

∀ε > 0,∃N2 ∈ N s.t ∀n,m > N2, |bm − bn| < ε.

So, in particular, if N = max{N1, N2}, for every nk,m > N we have that |bnk
−l| <

ε and |bm − bnk
| < ε. Adding these two equations together gives us that

|bnk
− l|+ |bm − bnk

| < 2ε

⇒|bnk
− l + bm − bnk

| < 2ε

⇒|bm − l| < 2ε,

(where the above implications follow from the triangle inequality and simple alge-
braic manipulations.)

But this is the definition of convergence! So we have that the sequence {bn}
converges as claimed. �

The following example illustrates why the Cauchy criterion is sometimes useful,
as it can be much easier to show that certain things are Cauchy than to show that
they converge – in particular, if we don’t know where a sequence converges to, it
can be much easier to show that it’s Cauchy than to show it converges.

Example 2.3. Let

an :=
n∑
k=1

1
k2
.

Does an converge?
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Proof. So: we claim that {an} is in fact Cauchy. To see this: simply notice that
for any m,n > N where m > n

0 ≤ am − an =
m∑
k=1

1
k2
−

n∑
k=1

1
k2

=
m∑

k=n+1

1
k2

<

m∑
k=n+1

1
k(k − 1)

=
m∑

k=n+1

1
k − 1

− 1
k

=
m∑

k=n+1

1
k − 1

−
m∑

k=n+1

1
k

=
m−1∑
k=n

1
k
−

m∑
k=n+1

1
k

=
1
n
− 1
m

<
1
n

+
1
m

<
2
N
.

Thus, if N > 2
ε , we have that for any m,n > N ,

|am − an| <
2

2/ε
= ε.

But this just means that our sequence is Cauchy! So, by the above theorem, it
converges. �

3. Series and Sums

So: with the above example in mind, we now turn from general sequences to the
study of series and infinite sums. We define the concept of an “infinte sum” below:

Definition 3.1. A sequence is called summable if the sequence {sn}∞n=1 of partial
sums

sn := a1 + . . . an

converges. If it does, we then call the limit of this sequence the sum of the an, and
denote this quantity by writing

∞∑
n=1

an.

We first illustrate this definition by a pair of examples:
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Example 3.2. For any r ∈ (−1, 1), does the sum
∞∑
n=0

rn

converge? If so, what does it converge to?

Proof. So: this can be done by simply performing the following algebraic trick: if
we denote the partial sums r0 + r1 + r2 + . . . rn by the symbols sn, we have that

sn = 1 + r1r2 + . . .+ rn

r · sn = r1 + r2 + . . . rn+1

⇒ sn − rsn = 1− rn+1

⇒ sn(1− r) = 1− rn+1

⇒ sn =
1− rn+1

1− r

⇒ lim
n→∞

sn = lim
n→∞

1− rn+1

1− r
=

1
1− r

.

But the limit of these partial sums is, by definition, the infinite sum of the rn’s! So
this sum converges – specifically, it converges to 1

1−r . �

Example 3.3. Does the sum
∞∑
n=1

1
n

converge?

Proof. This sum, in fact, does not converge! To see this, simply note that if sn
denotes the partial sums 1 + 1

2 + . . .+ 1
n , we have that

sn =
n∑
k=1

1 · 1
k
≥
∫ n

1

1
x
dx = log(n),

and thus that

lim
n→∞

sn ≥ lim
n→∞

log(n) =∞,

and so (in particular) does not converge. �

So: because series are a special type of sequences, it stands to reason that all of
our original theorems on sequences should have a nice interpretation in the language
of infinte sums. We describe two such quick results here:

Lemma 3.4. (Cauchy criterion) A sequence {an} is summable if and only if

lim
m,n→∞

|an + an+1 + . . .+ am| = 0

Proof. Just place the sequence {
∑n
k=1 ak}∞n=1 into the definition of a Cauchy se-

quence, and apply our earlier theorem that says that sequences are Cauchy if and
only if they converge. �

Theorem 3.5. (Vanishing criterion) If {an} is summable, then limn→∞ an = 0.
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Proof. Let m = n+ 1 in the limit limm,n→∞ |an + an+1 + . . .+ am| = 0, which (by
the above) is equivalent to summability. �

Theorem 3.6. (Boundedness criterion:) Suppose that {an} is a sequence of non-
negative numbers such that the collection of all partial sums

∑n
k=1 an is bounded.

Then {an} is summable.

Proof. So: because the an are all nonnegative, we have that the sequence {
∑n
k=1 an}

is nondecreasing. By assumption, it’s also bounded; so it must converge! �

These results, admittedly, are pretty trivial, and aren’t really “new” ideas. The
following theorem, however, is a tool that’s markedly more powerful than anything
we have in the world of just general sequences:

Theorem 3.7. (First Comparison Test:) Suppose that {an} and {bn} are sequences
such that0 ≤ an ≤ bn, for all n. Then {an} is summable if {bn} is summable.

Proof. So: again, because the an are positive, the sequence of partial sums {
∑n
k=1 an}

is nondecreasing. As well, because
n∑
k=1

an ≤
n∑
k=1

bn ≤
∞∑
k=1

bn = some fixed constant l <∞,

the sequence of partial sums is bounded; so it converges! �

This test can be thought of as a weirder form of the squeeze theorem – in that to
show that a sequence converges, we merely need to show that it is termwise positive
and less than another sequence that converges, not that it is pinched by a pair of
sequences that converge to the same place! In fact, most of the time when we apply
the comparison test, we will be bounding

∑∞
an above by a sum that converges

to a value much large than
∑∞

an. Some examples follow below:

Example 3.8. Let

an =
2

2n − sin(n)
.

Is an summable?

Proof. Well,

an =
2

2n − sin(n)
≤ 2

2n − 1
≤ 2

2n−1
= 4 · 1

2n
,

and
∑∞
n=1 4 · 1

2n = 4 ·
∑∞
n=1

1
2n = 4 · 1 = 4 converges; thus, by the first comparison

test, so does
∑∞

an. �

Example 3.9. Let

an =
3n3

4n4 − 1
Is an summable?

Proof. Well,

an =
3n3

4n4 − 1
≥ 3n3

4n4
=

3
4
· 1
n
,

and
∑∞
n=1

3
4 ·

1
n = 3

4 ·
∑∞
n=1

1
n diverges; as a result, so does

∑∞
an. �



8 INSTRUCTOR: PADRAIC BARTLETT

As suggested by its name, there is another comparison test beyond the first
comparison test, which we describe below:

Theorem 3.10. (Second Comparison Test:) Suppose that {an} and {bn} are a
pair of positive sequences such that limn→∞

an

bn
exists and is equal to some ratio

c 6= 0. Then {an} is summable if and only if {bn} is summable.

Proof. Note first that because c 6= 0, we have that both the limits limn→∞
an

bn
= c

and limn→∞
bn

an
= 1

c exist. Thus, without any loss of generality, if we want to show
that {an} is summable if and only if {bn} is summable, we can just assume that
that {bn} is summable, and show that {an} is consequently summable (as by our
argument above, they’re completely interchangeable.)

So: because limn→∞
an

bn
exists, we have (by definition) that there is some N such

that for all n > N ,
an
bn
≤ 2c

⇒an ≤ 2cbn

So: because the an’s are positive and the sequence
∑∞ 2cbn = 2c

∑∞
bn converges,

the first comparison test tells us that the sum
∑∞

an must also converge! This
completes our proof. �

We conclude with a quick example of the use of this theorem:

Example 3.11. Let an = (n+1)3

4n . Is {an} summable?

Proof. Well, if bn = (n)3

4n ,

lim
n→∞

an
bn

= lim
n→∞

(n+1)3

4n

(n)3

4n

= lim
n→∞

(
n+ 1
n

)3

= 1;

so, by the second comparison test, {an} is summable if and only if {bn} is. But

(n)3

4n
≤ 3n

4n
=
(

3
4

)n
,

which we know to be summable; so by the first comparison test, {bn} is summable!
Consequently, {an} is summable as well. �
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