
MATH 1D, WEEK 4 – THE ORDER OF SUMMATION;
CONVERGENCE CONCEPTS FOR FUNCTIONS

INSTRUCTOR: PADRAIC BARTLETT

Abstract. These are the lecture notes from week 4 of Ma1d, the Caltech

mathematics course on sequences and series.

1. Homework 1 data

• HW average: 88%.
• Comments: as always: write more! Also, be careful that you’re actually

answering the question at hand; these problems were tricky enough that
some of you forgot what you were proving part of the way through.

2. The Order of Summation

The last few lectures of this class have largely concerned themselves with dis-
cussing the conditions under which infinte sums converge. In all of these discussions,
we’ve uniformly assumed that the infinte sum

∑∞
n=1 an denotes the limit

lim
n→∞

a1 + a2 + . . . an.

In the above sum, we assume that when we take this limit, we are always adding
up the an’s “in order” – i.e. we don’t look at the limit

lim
n→∞

a1 + a2 + a4 + a3 + a6 + a8 + a5 + a10 + a12 + . . . a2n−1 + a4n−2 + a4n,

where we’re adding up one odd term for every two even terms.
So: a natural question to ask here is “why don’t we?” After all, in the case of

finite sums, the order of addition doesn’t matter at all: e.g. 1 + 2 + 3 = 2 + 1 + 3 =
3+2+1, regardless of how you add it up. So: does this extend to the case of infinte
sums?

To partially answer this question, consider the sequence

∞∑
n=1

(1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
. . .

The terms of this series alternate in sign and go to zero: therefore, by Leibniz’s
theorem, we know that this series converges. So: suppose that we could rearrange
the terms of this sum without altering what it adds up to. Then, we would have

1
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(in particular, by using the rearrangement suggested above) that
∞∑

n=1

(1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
. . .

= 1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+

1
7
− 1

14
− 1

16
. . .

=
(

1− 1
2

)
− 1

4
+
(

1
3
− 1

6

)
− 1

8
+
(

1
5
− 1

10

)
− 1

12
+
(

1
7
− 1

14

)
− 1

16
. . .

=
1
2
− 1

4
+

1
6
− 1

8
+

1
10
− 1

12
+

1
14
− 1

16
. . .

=
1
2
·
(

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
. . .

)
=

1
2
·
∞∑

n=1

(1)n+1

n
.

Since the only solution to the equation x = 1
2x is for x to be zero, we ’ve just

shown that the sum above must be zero if we’re allowed to rearrange the terms in
its sum. But, we also know that

⇒
∞∑

n=1

(1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
. . .

=
(

1− 1
2

)
+
(

1
3
− 1

4

)
+
(

1
5
− 1

6

)
+
(

1
7
− 1

8

)
. . .

=
1

1 · 2
+

1
3 · 4

+
1

5 · 6
+

1
7 · 8

+ . . .

>
1
2
> 0;

so this sum is most definitely nonzero! So, at least in the case of the series above,
rearranging terms seems to radically change the sum of the original series.

For a moment, we might hope that the above result was just some artifact
of the construction we chose, or the specific series we were working with. This,
unfortunately, is very far from the truth, as the following theorem demonstrates:

Theorem 2.1. Pick any series
∑∞

n=1 an that converges conditionally, and choose
any r ∈ R. Then there is a rearrangement of the sequence{an}∞n=1 into a sequence
{bn}∞n=1 such that

∑∞
n=1 bn = r.

(In other words: if
∑∞

n=1 an is a conditionally convergent sequence, then by
switching its terms around we can make it sum up to any number we want.)

Proof. Before we begin, we should define what we mean by a “rearrangement” of
a sequence:

Definition 2.2. A rearrangement of a sequence {an} is another sequence {bn}
that takes the same values as the an’s as many times as the an’s do. Explicitly,
a rearrangement of the sequence {an}can be thought of as a sequence {bn} and a
bijective function f : N→ N such that

af(n) = bn,∀n.
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So: to begin our proof, take any conditionally convergent series
∑∞

n=1 an, and
suppose without any loss of generality that the constant r we want to rearrange∑∞

n=1 an to sum to is positive. (The proof will look the exact same if r ≤ 0.)
Given our series

∑∞
n=1 an, define the following two sequences {pn}∞n=1, {qn}∞n=1

as follows:

{pn} := the positive terms of the an’s

{qn} := the negative terms of the an’s.

For example, if {an}∞n=1 was the sequence
{

(−1)n+1

n

}
, then

{pn} :=
{

1
2n− 1

}∞
n=1

, and

{qn} :=
{
− 1

2n

}∞
n=1

.

So: from week 3’s notes from Thursday, we know that the series
∑∞

n=1 an is
absolutely convergent if and only if the sums

∑∞
n=1 pn and

∑∞
n=1 qn are both con-

vergent. So, because we’re assuming that
∑∞

n=1 |an| is divergent, we then know
that at least one of the sums

∑∞
n=1 pn or

∑∞
n=1 qn must diverge.

We claim that in fact both of these sums must diverge. To see why, simply
proceed by contradiction; i.e. assume that

∑∞
n=1 pn converges and

∑∞
n=1 qn diverges

(the case where
∑∞

n=1 pn diverges but
∑∞

n=1 qn converges is handled in a similar
way). However, this means that we have

∞∑
n=1

an = lim
N→∞

(
N∑

n=1

an

)

= lim
N→∞

 ∑
all an>0,

n≤N

an +
∑

all an<0,
n≤N

an



≤ lim
N→∞

 ∞∑
n=1

pn +
∑

all an<0,
n≤N

an



=
∞∑

n=1

pn + lim
N→∞

 ∑
all an<0,

n≤N

an


=
∞∑

n=1

pn + lim
N→∞

(
N∑

n=1

qn

)
= −∞.
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But
∑
an is conditionally convergent; so this is a contradiction! Hence, both∑∞

n=1 pn and
∑∞

n=1 qn must both diverge.
The remainder of the proof here is a relatively simple idea that requires an

unfortunate amount of notation to describe. For the busy reader, the basic idea is
precisely the same as the proof that we used for question 4 on homework 2 – i.e.
because the sums of the positive terms and the sums of the negative terms both
diverge, we can just “add up” positive terms until we get bigger than r, then “add
up” negative terms until we become smaller than r, and repeat this process until
we’ve added up all of the terms in {an}. Because the terms an go to 0, we know
that these partial sums must converge to r; so we’re done!

To make the above formal: because
∑∞

n=1 pn diverges, we know that there is
some M1 such that

∑M1
n=1 pn > r. Pick the smallest such M1 such that this is true:

i.e pick M1 such that
M1−1∑
n=1

pn ≤ r,
M1∑
n=1

pn > r.

Note further that, by the construction above, that M1 in some sense marks the
“best approximation” to r that we can get by adding up the values of the an’s; i.e.
that ∣∣∣∣∣

M1∑
n=1

pn − r

∣∣∣∣∣ < pM1 .

Denote the quantity
∣∣∣∑M1

n=1 pn − r
∣∣∣ by the symbol S1.

Then, because
∑∞

n=1 qn also diverges, we know that there is some value N1 such
that

∑M1
n=1 pn +

∑N1
n=1 qn < r; again, pick the smallest value such that this holds.

This, again, puts us in the situation such that
M1∑
n=1

pn +
N1−1∑
n=1

qn ≥ r,
M1∑
n=1

pn +
N1∑

n=1

qn < r.

Again, because of our construction above, we can think of N1 as another “best
approximation” to r, in that∣∣∣∣∣

M1∑
n=1

pn +
N1∑

n=1

qn − r

∣∣∣∣∣ < |qN1 |.

Denote this quantity
∣∣∣∑M1

n=1 pn

∑N1
n=1 qn − r

∣∣∣ by the symbol T1.
Repeat the process above to generate a series of values Mi, Ni, Si, Ti for all i ∈ N

such that the value Mi, Ni correspond to increasing “better approximations” to r
and Si, Ti continue to measure the distance between these partial sums and r.

So: take the rearrangement

p1, p2, . . . , pM1 , q1, q2, . . . qN1 , pM1+1, pM1+2, . . . , pM2 , qN1+1, qN1+2, . . . , qN2 , . . .

given to us by our construction above. By definition, we know that the partial sums
of the values in this sequence are bounded by the consecutive values of the Si’s and
Ti’s; but these values are both bounded (as we showed above for S1, T1) by pNi

and qni
. As these values pNi

, qni
are just increasingly further-along entries in the

sequence an, and the an converge to zero (because the sum
∑∞

n=1 an converges,)
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we know that they must converge to zero – thus, the partial sums converge to r!
So we’ve managed to rearrange the terms of the an’s in such a way to make their
corresponding series sum up to r, for any r. �

A natural question to ask after seeing the above proof is whether this is something
that afflicts all sums; i.e whether we can do this “rearranging” trick on any series
to get it to go wherever we would like. Intuitively, this seems impossible; i.e. if we
add up the fractions 1

2n , it seems reasonable to expect that we’d always make it to
1, regardless of the order that we add them up in. This turns out to be true! i.e.
we have the following theorem:

Theorem 2.3. If the sum
∑∞

n=1 an is absolutely convergent and {bn} is a re-
arrangement of the an’s, then

∑∞
n=1 an =

∑∞
n=1 bn.

Proof. So: because the sum
∑∞

n=1 |an| converges, we know that for any ε > there
is a N such that

∞∑
n=N+1

|an| < ε.

Basically, this tells us that almost all of the “mass” of the sum
∑∞

n=1 |an| lies
in its first N entries. Thus, if we look at partial sums of the an’s and bn’s that
contain these first N entries, we can see that they’re basically the same, up to some
εs. Letting ε go to zero then tells us that these sums converge to the same limit,
and thus completes our proof!

More explicitly: as a result of the above, we have that

∣∣∣∣∣
∞∑

n=1

an

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
n=1

an +
∞∑

n=N+1

an

∣∣∣∣∣
≤

∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣+
∞∑

n=N+1

|an|

≤

∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣+ ε, and∣∣∣∣∣
∞∑

n=1

an

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
n=1

an

∣∣∣∣∣ .
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Pick M to be a sufficiently large number such that all of the entries a1 . . . aN show
up among the entries b1 . . . bM . Then, we have that∣∣∣∣∣

∞∑
n=1

bn

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

N∑
n=1

an +
∑

bn’s left over,
n≤N

bn +
∞∑

n=N+1

an

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣+
∑

bn’s left over,
n≤N

|bn|+
∞∑

n=M+1

|bn|

≤

∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣+
∞∑

n=N+1

|an|+
∞∑

n=N+1

|an|

≤

∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣+ 2ε, and∣∣∣∣∣
∞∑

n=1

bn

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
n=1

an

∣∣∣∣∣ .
So the distance between these two sums is at most 2ε; letting ε go to zero then tells
us that these sums converge to the same value. �

3. Convergence and Functions

Thus far, all of our discussions about convergence have dealt with real numbers:
over the last three and a half weeks, we’ve developed a number of theorems and tests
designed to let us know when various sequences and series of real numbers converge,
and to tell us what they converge to. Yet, the innate concept of convergence is just
one of “distance” – essentially, the claim that a sequence converges to a value is
just a way of saying that its terms become very “close” to that value.

So: if the key idea of convergence is just this idea of “distance,” perhaps we can
extend this concept of convergence to other objects. After all, we can formulate
definitions of distance for all sorts of objects, not just real numbers; so why couldn’t
we come up with notions of convergence as well? This, in fact, is the aim of today’s
lecture: to come up with a few ideas of what convergence might mean for functions
on the real numbers.

First, note that by a sequence of functions we will merely mean a collection
{fn}∞n=1 of functions, indexed by the natural numbers. In this situation, suppose
that all of the functions fn are maps from some set A to the real numbers, and
suppose further that we’re given a function f : A → R. What could we possibly
hope to mean by the equation

lim
n→∞

fn = f ?

One possible idea – certainly one of the most intuitive ideas – would be to
simply say that limn→∞ fn = f holds if and only if the sequences {fn(x)} converge
to f(x), for every x ∈ A. In other words, we’d be making the definition that a
sequence of functions converges to some value iff it converges at every point; a sort
of “point-wise” notion of convergence, if you will. This is in fact what this notion
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– pointwise convergence – is called; to emphasize its importance, we define it
more formally here:

Definition 3.1. We say that a sequence {fn} of functions A → R converges
pointwise to some function f : A → R if and only if limn→∞ fn(x) = f(x), for
every x ∈ A.

So: if a sequence of real numbers all had a certain property – like all be-
ing positive, or greater than three, or integers – then if they converged to some
value, that value often had to share that property. A natural question, then, is
whether this holds true for sequences of functions; in other words, if we have a
sequence of differentiable/continuous functions, must their pointwise limit be dif-
ferentiable/continuous? If we have a sequence of functions all with integral 1 over
some region, must their pointwise limit? We seek to answer these questions via a
series of examples, calculated below:

Example 3.2. Let

fn(x) :=

 0, x < 0
xn, 0 ≤ x < 1
1, x ≥ 1

What is the pointwise limit of the fn’s?

Proof. Before we begin, we offer a graph of one of the fn’s, to hopefully motivate
our calculations below:

1

1
To calculate what the fn(x)’s converge to, we break the x’s apart into three cases:

(1) x < 0. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

0 = 0.

(2) 0 ≤ x < 1. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

xn = 0,

as well.
(3) 1 ≥ x. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

1 = 1.
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Combining the results above tell us that the functions fn converge pointwise to
the function

f(x) :=
{

0, x < 1
1, x ≥ 1

�

Interestingly enough, the function above isn’t continuous, despite the fact that
all of the fn’s were! So pointwise convergence doesn’t seem to be “enough,” in a
sense, to force continuous things to stay continuous.

Perhaps this was an artifact of the fairly stilted and disjointed construction of
the fn’s above in our first example; i.e. maybe if we picked a sequence of fn’s that
were “smoother” – say, differentiable – they would stay continuous when we passed
to the pointwise limit. We explore this hypothesis in the following example:

Example 3.3. Let

fn(x) :=

 1, x ≤ 0
cos(nπx), 0 < x < 1/n
−1, x ≥ 1/n

What is the pointwise limit of the fn’s?

Proof. We again offer a motivational graph of the fn’s:

1/n

1

1

Before beginning, we note that these functions indeed are all differentiable, as
their derivatives on each part of their piecewise definition are

f ′n(x) :=

 0, x ≤ 0
−nπ · sin(nπx), 0 < x < 1/n
0, x ≥ 1/n

,

and these all agree at the “cross-over” points 0 and 1/n.
So: to calculate what these fn(x)’s converge to, we just break the x’s apart into

two cases:

(1) x ≤ 0. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

1 = 1.
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(2) x > 0. In this case, we know (from the first quarter) that we can always
find a value of N such that 1

N < x; thus, for every n > N , we have that
fn(x) = −1, because x > 1

n . Thus, we have that

lim
n→∞

fn(x) = lim
n→∞

−1 = −1.

Combining the results above tell us that the functions fn converge pointwise to
the function

f(x) :=
{

1, x ≤ 0
−1, x > 0

�

Apparently, not even choosing differentiable curves can help us preserve conti-
nuity (much less differentiability itself!) So, the last hypothesis we have left to
explore is whether the integral is preserved under pointwise limits – i.e. if I have
a sequence of functions fn all with integral

∫∞
0
fn(x)dx = 1, say, then must their

pointwise limit f also have
∫∞
0
f(x)dx = 1? Based on our bleak results thus far,

you may be able to guess the conclusion we draw from our third example, below:

Example 3.4. Let

fn(x) :=


1, x ≤ 0
n2x, 0 < x ≤ 1/n
−n2x+ 2n, 1/n < x ≤ 2/n
0, x ≥ 2/n

What is the pointwise limit of the fn’s?

Proof. We once again open with a graph of the fn’s:

n

1/n 2/n

By construction, the integral of any of these fn’s is just the area of a triangle
with base 2/n and height n – i.e. 1, for every fn.

So: to calculate what these fn(x)’s converge to, we again break the x’s apart
into two cases:

(1) x ≤ 0. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

0 = 0.
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(2) x > 0. In this case, we again know that we can find a value of N such that
2
N < x; thus, for every n > N , we have that fn(x) = 0, because x > 2

n .
Thus, we have that

lim
n→∞

fn(x) = lim
n→∞

0 = 0.

Combining the results above tell us that the functions fn converge pointwise to
the function

f(x) := 0.

�

The moral of the above three examples seems to be that our notion of pointwise
convergence, as intuitive and easy-to-use as it is, fails miserably at conserving most
of the basic concepts we have for describing functions. Continuous functions fail to
stay continuous, integrals aren’t stable, differentiability has no hope; it’s all a big
mess. Yet, by looking at the graphs of the three “counterexamples” above, we can
perhaps come up with a remedy for this dilemma:

In each of the three graphs above, there’s a region (highlighted in yellow) where
the graph seems to be almost moving “too fast” – i.e. while all of the fn’s remain
continuous for every n, as the n’s get large our functions begin to have massive
displacement over a very small area (as in the yellow regions.) So, while the fn’s
converged pointwise to their pointwise limits f , at any point along their convergence
there always remained a small region – corresponding to the yellow areas – where
these functions were very far apart.

So: what if we used this as a new notion for convergence? I.e. what if we said
that a sequence of functions fn converged to a function f if and only if the fn’s
became uniformly close to the function f? In other words: what if we said that
limn→∞ fn = f if and only if the fn’s are eventually ε-close to f everywhere, for
any epsilon and large enough n? Well, we definitely wouldn’t have to worry about
our three earlier examples, as the picture below shows:



MATH 1D, WEEK 4 – THE ORDER OF SUMMATION; CONVERGENCE CONCEPTS FOR FUNCTIONS11

Here, we can see that the fn’s never lie within a small neighborhood (say, the one
shaded in orange) of their pointwise limits f : so, while they do converge to f point-
wise, they would fail under our proposed definition above! So, there’s maybe some
merit to this idea: so let’s formally define this notion of a “uniform” convergence,
and see where it takes us:

Definition 3.5. We say that a sequence {fn} of functions A → R converges
uniformly to some function f : A→ R if and only if for every ε > 0, there is a N
such that for every n > N ,

|f(x)− fn(x)| < ε,∀x ∈ A.

In other words, a sequence {fn} converges uniformly to some function f if and
only if the fn’s are all ε−close to f everywhere, for sufficiently large n.

The payoff for this definition lies in the following two theorems, which simply
state that uniform convergence preserves continuity and integrals. We state and
prove them below:

Theorem 3.6. If limn→∞ fn = f uniformly, and all of the functions fn, f are
integrable on some interval [a, b], then

lim
n→∞

∫ b

a

fn(x)dx =
∫ b

a

f(x)dx.

Proof. So: because limn→∞ fn = f uniformly, we know that (by definition) for any
ε > 0 there is a N such that for all n > N , |f(x)− fn(x)| < ε for all x ∈ [a, b].

But this means that for all n > N ,∣∣∣∣∣
∫ b

a

f(x)−
∫ b

a

fn(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(f(x)− fn(x)) dx

∣∣∣∣∣
≤
∫ b

a

|f(x)− fn(x)| dx (we proved this property of integrals last quarter)

≤
∫ b

a

εdx

= (b− a)ε.

Because we can pick ε to be arbitrarily small, we have that
∫ b

a
f(x) =

∫ b

a
fn(x)dx,

as claimed. �

Theorem 3.7. If limn→∞ fn = f uniformly, and all of the functions fn are con-
tinuous on some interval (a, b), then so is f(x).

Proof. So: because limn→∞ fn = f uniformly, we know that (by definition) for any
ε > 0 there is a n such that , |f(x)− fn(x)| < ε/3 for all x ∈ [a, b].

In particular, for any h such that both x, x+ h lie in (a, b), we have that

|f(x)− fn(x)| < ε/3

|f(x+ h)− fn(x+ h)| < ε/3.
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But we also know by the continuity of fn that for every ε, there is a δ such that
if |h| < δ,

|fn(x)− fn(x+ h)| < ε/3.

Adding these three inequalities together, we have that for any ε > 0, there is a
δ such that for any x in (a, b) and |h| < δ,

|f(x)− fn(x)|+ |fn(x)− fn(x+ h)|+ |fn(x+ h)− f(x+ h)| < ε/3 + ε/3 + ε/3

⇒ |f(x)− fn(x) + fn(x)− fn(x+ h) + fn(x+ h)− f(x+ h)| < ε

⇒ |f(x)− f(x+ h)| < ε.

But this is the literal definition of continuity for f(x)! Thus, we have shown that
uniform convergence preserves continuity, as claimed. �
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