Math 1d	Instructor: Padraic Bartlett	
	Homework 3	
Week 4		Caltech - Winter 2012

Instructions: Choose three questions out of the following six to complete. If you attempt more than three questions, your three highest scores will be recorded as your grade. Also, write me/Daiqi me an email if you get stuck!

Resources allowed: Wikipedia, Mathematica, your notes, the online class notes, textbooks, and your classmates. If you've completed a problem via Mathematica or writing a program, attach your code to receive credit.

Standard Exercises:

1. Determine whether the following series converge or diverge:
(a) $\quad \sum_{n=1}^{\infty}(-1)^{n} \cdot \sin \left(\frac{1}{n}\right)$.
(b) $\quad \sum_{n=1}^{\infty} \frac{\cos (n) \cdot n^{3}}{n!}$.
(c) $\quad \int_{\pi}^{\infty} \frac{\sin (x)}{x} d x$.

Hint: for (c), try writing this integral as the sum

$$
\sum_{n=1}^{\infty} \int_{n \pi}^{(n+1) \pi} \frac{\sin (x)}{x} d x
$$

2. (a) Show that the pointwise limit of the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$, where

$$
f_{n}(x)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
x^{n}-x^{2 n}, & 0<x<1 \\
0, & 1 \leq x
\end{array}\right.
$$

is 0 (where we think of 0 as the function that always returns 0 on any input.)
(b) Does this sequence converge uniformly to 0 ? (Hint: take each f_{n} and find the value of x at which it takes on its maximum, using the derivative. What is f_{n} at that maximum value?)
3. (a) Create a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of discontinuous functions on \mathbb{R} that converges uniformly to 0 .
(b) Create a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ of functions on \mathbb{R} that converge uniformly to 0 , but such that

$$
\int_{-\infty}^{\infty} g_{n}(x) d x=1, \forall n \in \mathbb{N} .
$$

(Hint: in class, we showed that if a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ converges uniformly to some function $g(x)$, then on any finite interval $[a, b], \lim _{n \rightarrow \infty} \int_{a}^{b} g_{n}(x) d x=\int_{a}^{b} g(x)$. So on any given interval, the integrals of your functions is going to have to converge to 0 : it's only by using all of \mathbb{R} that you're going to be able to construct your sequence.) (Also, style points if you answer both (a) and (b) using the same sequence.)

More Interesting Problems:

4. In class, we rearranged the terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ into the series

$$
\begin{aligned}
& \left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\left(\frac{1}{7}-\frac{1}{14}\right)-\frac{1}{16} \cdots \\
= & \frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\frac{1}{14}-\frac{1}{16} \cdots \\
= & \frac{1}{2} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} .
\end{aligned}
$$

(a) Using similar techniques, rearrange and group/split up the terms of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ to get a series that converges to

$$
2 \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

(b) Now, create a rearrangement of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ into a series that diverges. (Hint: use the fact that the harmonic series diverges to show that if you add up a bunch of terms all with the same sign, you can get arbitrarily large sums. Use this to describe a rearrangement into a series that cannot converge.)
5. The following theorem (Dirichlet's test) is a generalization of the alternating series test we discussed on Monday:

Theorem 1 (Dirichlet's test): Suppose that $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence such that the partial sums of the b_{n} 's are bounded: i.e. there is some value M such that

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} b_{k}\right|<M
$$

Suppose further that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is such that

- $\lim _{n \rightarrow \infty} a_{n}=0$,
- the a_{n} 's are all positive, and
- the a_{n} 's are a monotonically decreasing sequence.

Then the series

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

converges.
The alternating series test is a special case of this theorem, if we let $b_{n}=(-1)^{n+1}$.
Using this theorem, prove that

$$
\sum_{n=1}^{\infty} \frac{\sin (n)}{n}
$$

converges.
(Hint: look at the sum $\sum_{k=1}^{n} \sin (k) \sin (1 / 2)$. Using the angle-addition formula $2 \sin (\alpha) \sin (\beta)=$ $\cos (\alpha-\beta)-\cos (\alpha+\beta)$, can you show this is bounded? How does this sum relate to the sum $\sum_{k=1}^{n} \sin (k)$? How does this observation help you apply Dirichlet's test?)
6. (Dynamical Systems!): Suppose that $f(x)$ is a continuous real-valued function on \mathbb{R} with the following property:

$$
\forall a, b \in \mathbb{R},|f(a)-f(b)|<\frac{1}{2}|a-b| .
$$

Let $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be defined recursively by

$$
\begin{aligned}
f_{1}(x) & =f(x) \\
f_{n+1}(x) & =f\left(f_{n}(x)\right) .
\end{aligned}
$$

In other words, $f_{n}(x)$ is just the function created by composing f with itself n times.
(a) Using induction, show that for any value x, we have

$$
\left|f_{n+1}(x)-f_{n}(x)\right| \leq \frac{1}{2^{n}} \cdot|f(x)-x| .
$$

(b) Using a telescoping sum, write

$$
f_{n+1}(x)=\sum_{k=1}^{n} f_{k+1}(x)-f_{k}(x) .
$$

Use this observation, part (a), and your knowledge of series to show that

$$
\lim _{n \rightarrow \infty} f_{n+1}(x)
$$

exists and is finite.
(c) Let x_{0} denote the limit of the above process. Show that $f\left(x_{0}\right)=x_{0}$: i.e. that x_{0} is a fixed point of f. (Hint: apply f to both sides of your limit, and use the fact that f is continuous.)
(d) Show that no matter what value of x we start the above process with, you always get the same value x_{0} ! (Hint: suppose you have two fixed points, and apply f to both of them.)

