
Math 1d Instructor: Padraic Bartlett

Lecture 5: Taylor Series

Week 6 Caltech - Winter 2012

1 Random Questions

Question 1.1. A graph consists of the following:

• A set V of vertices.

• A set E of edges, where each edge consists of a distinct unordered pair of distinct
vertices.

For example, the pentagon

1

2

34

5

can be thought of as the graph with

• V = {1, 2, 3, 4, 5},

• E =
{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}

}
.

A k-coloring of a graph is a way to pick out k distinct colors and assign each vertex in
your graph a color, so that no edge has both of its endpoints given the same color.

Given any set of four numbers D = {w, x, y, z}, consider the following graph G:

• V (G) = Z.

• E(G) =
{
{a, b} : the distance between a and b is an element of D.

}
What is the largest number of colors you need to color G?

Question 1.2. Consider the following set of tiles1:

A tiling of the plane R2 is a way to place copies of these tiles, without rotating or reflecting
them, on the plane R2 such that

• All of R2 is covered by these tiles.

• No two tiles overlap, except for possibly on their boundaries.

1These are called Wang tiles, and there are a ton of interesting properties that these satisfy. Check
http://en.wikipedia.org/wiki/Wang tile for more information.
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• Whenever two tiles are adjacent, the colors of their adjacent sides must agree. I.e. if
a square with a red northern quadrant is placed on our grid, any square that goes on
top of it must have a red southern quadrant.

Show that you can tile R2 with the given set of tiles.

2 Taylor Polynomials and Series

As we saw on Monday of last week, power series are remarkably nice objects to work with.
In particular, because power series uniformly converge within their radii of convergence R,
we know that the equations∫ ( ∞∑

n=0

anx
n

)
dx =

∞∑
n=0

∫
anx

ndx = C +

∞∑
n=0

an
n+ 1

xn+1, and

d

dx

( ∞∑
n=0

anx
n

)
=
∞∑
n=0

d

dx
(anx

n) =

∞∑
n=1

n · anxn−1

hold and converge for any power series (
∑∞

n=0 anx
n with radius of convergence R, and any

x ∈ (−R,R).
In other words, power series are easily differentiated and integrated as many times as

we like! This is remarkably useful: as you probably remember from Math 1a, integration
and differentiation are often really difficult tasks.

A natural question is the following: how can we use this observation about power series
to work with other kinds of functions? In other words: if I give you a function, is there any
way to turn it into a power series, so that we can integrate and differentiate it easily?

As it turns out, there is! As a motivating example, consider the function f(x) = ex.
How can we approximate this with a power series?

Initially, we have no idea; so let’s try something simpler! Specifically, let’s try approxi-
mating it at exactly one point; say x = 0. Additionally, let’s try not approximating it by a
power series just yet, but instead try approximating it with just polynomials; maybe being
finite will help illustrate what we’re trying to do.

Let’s start with a polynomial of degree 0 – i.e. a constant. What constant best
approximates ex at 0? Well: if we set our constant equal to e0 = 1, then the constant
function will at least agree with ex at 0. That’s about as good as we can expect to do: so
let’s call the 0th-order approximation to ex, T0(ex), the constant function 1.

Now, let’s take a polynomial of degree 1: i.e. a line, of the form T1(e
x) = a+ bx. What

should our constants a and b be? Well: again, if we want this approximation to agree with
ex at 0, we should set a = 1, so that e0 = 1 = 1+b·0. For b; visually, we’d get an even better
approximation of ex if we picked b such that the slope of a+ bx and ex both agreed at 0! In

other words, if we set b = 1, we would have d
dx (ex)

∣∣∣
x=0

= ex
∣∣∣
x=0

= 1 = d
dx (1 + 1 · x)

∣∣∣
x=0

.

So, let’s define the 1st-order approximation to ex, T1(ex), the line 1 + x.
Similarly, to make the 2nd-order approximation to ex, T2(ex), we want to take a

degree-2 polynomial a0 + a1x+ a2x
2 and find values of a0, a1, a2 such that the 0th, 1st, and
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2nd derivatives of ex agree with T2(e
x) at 0. Therefore, we have

(ex)
∣∣∣
x=0

= 1 =
(
a0 + a1x+ a2x

2
) ∣∣∣

x=0
= a0

⇒ a0 = 1,

d

dx
(ex)

∣∣∣
x=0

= (ex)
∣∣∣
x=0

= 1 =
d

dx

(
a0 + a1x+ a2x

2
) ∣∣∣

x=0
= a1

⇒ a1 = 1,

d2

dx2
(ex)

∣∣∣
x=0

= (ex)
∣∣∣
x=0

= 1 =
d2

dx2
(
a0 + a1x+ a2x

2
) ∣∣∣

x=0
= 2a2

⇒ a2 =
1

2
,

and therefore that the 2nd-order approximation to ex, T2(e
x), is 1 + x+ x2

2 .
Using similar logic, we can see that because

dn

dxn
(ex)

∣∣∣
x=0

= (ex)
∣∣∣
x=0

= 1, and

dn

dxn
(a0 + a1x+ . . . anx

n)
∣∣∣
x=0

=
dn−1

dxn−1
(
a1 + 2a2x+ . . . nanx

n−1) ∣∣∣
x=0

=
dn−2

dxn−2
(
2a2x+ 3 · 2a3x+ . . . (n) · (n− 1)anx

n−2) ∣∣∣
x=0

. . . = n!an,

in general we have an = 1
n! , and thus that the nth-degree approximation to ex is

∑n
n=0

xn

n! .
We graph some of these approximations here:

T0(e
x) = 1

T1(e
x) = 1+x

T2(e
x) = 1+x+ x2/2

T3(e
x) = 1+x+ x2/2 + x3/3

f(x) = ex
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Surprisingly, these “local” approximations are getting close to ex not just at 0, but in fact
in a decently-sized neighborhood of 0! In fact, if we take the limit of these approximations

∞∑
n=0

xn

n!
,

this power series turns out to be equal to ex everywhere!
So: this idea of local approximations appears to be giving us a bunch of global data!

This motivates the following definition of a Taylor polynomial and Taylor series, which we
give here:

Definition 2.1. Let f(x) be a n-times differentiable function on some neighborhood (a−
δ, a + δ) of some point a. We define the nth Taylor polynomial of f(x) around a as
the following degree-n polynomial:

Tn(f(x), a) :=
n∑

n=0

f (n)(a)

n!
· (x− a)n.

Notice that this function’s first n derivatives all agree with f(x)’s derivatives: i.e. for
any k ≤ n,

∂k

∂xk
(Tn(f(x), a))

∣∣∣
a

= f (k)(a).

This motivates the idea of these Taylor polynomials as “ nth order approximations at
a” of the function f(x): if you only look at the first n derivatives of this function at a, they
agree with this function completely.

We define the nth order remainder function of f(x) around a as the difference
between f(x) and its nth order approximation Tn(f(x), a):

Rn(f(x), a) = f(x)− Tn(f(x), a).

If f is an infinitely-differentiable function, and limn→∞Rn(f(x), a) = 0 at some value of
x, then we can say that these Taylor polynomials converge to f(x), and in fact write f(x)
as its Taylor series:

T (f(x)) =
∞∑
n=0

f (n)(a)

n!
· (x− a)n.

Usually, we will assume that our Taylor series are being expanded around a = 0, and
omit the a-part of the expressions above. If it is not specified, always assume that you’re
looking at a Taylor series expanded around 0.

One of the largest questions, given a function f(x), is the following: at which values of
x is f(x) equal to its Taylor series? Equivalently, our question is the following: for what
values of x is limn→∞Rn(f(x)) = 0?

Our only/most useful tool for answering this question is the following theorem of Taylor:

Theorem 2.2. (Taylor’s theorem:) If f(x) is infinitely differentiable, then

Rn(f(x), a) =

∫ x

a

dn+1

dxn+1 (f(x))
∣∣∣
x=t

n!
· (x− t)ndt.
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In other words, we can express the remainder (a quantity we will often not understand) as
an integral involving the derivatives of f divided by n! (which is often easily bounded) and
polynomials (which are also easy to deal with.)

The main use of Taylor series, as stated before, is our earlier observation about how
easy it is to integrate and differentiate power series:

Theorem 2.3. Suppose that f(x) is a function with Taylor series

T (f(x)) =

∞∑
n=0

f (n)(a)

n!
· (x− a)n,

and furthermore suppose that f(x) = T (f(x)) on some interval (−a, a). Then we can
integrate and differentiate f(x) by just termwise integrating and differentiating T (f(x)):
i.e.

d

dx
f(x) =

∞∑
n=0

d

dx

(
f (n)(a)

n!
· (x− a)n

)
=

∞∑
n=0

f (n)(a)

(n− 1)!
· (x− a)n−1, and

∫
f(x)dx =

∞∑
n=0

∫ (
f (n)(a)

n!
· (x− a)n

)
dx =

∞∑
n=0

f (n)(a)

(n+ 1)!
· (x− a)n+1 + C.

In the following section, we study several functions, find their Taylor series, and find
out where these Taylor series converge to their original functions:

3 Taylor Series: Examples

Proposition 3.1. The Taylor series for f(x) = ex about 0 is

∞∑
n=0

xn

n!
.

Furthermore, this series converges and is equal to ex on all of R.

Proof. From our discussion earlier, we know that

T (ex) =

∞∑
n=0

xn

n!
.

Furthermore, by using Taylor’s theorem, we know that the remainder term Rn(ex) is just

Rn(ex) =

∫ x

0

dn+1

dxn+1 (ex)
∣∣∣
x=t

n!
· (x− t)ndt =

∫ x

0

et

n!
· (x− t)ndt.

Integrating this directly seems. . . painful. However, we don’t need to know exactly what
this integral is: we just need to know that it gets really small as n goes to infinity! So,
instead of calculating this integral directly, we can just come up with some upper bounds
on its magnitude.
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Specifically: on the interval [0, x], the function |et| is bounded above by e|x|, and the
function |(x− t)n| takes on its maximum at t = 0, where it’s |x|n. Therefore, we have that∣∣∣∣∫ x

0

et

n!
· (x− t)ndt

∣∣∣∣ ≤ ∫ |x|
0

e|x|

n!
· |x|ndt.

The function being integrated at the right is just a constant with respect to t: there aren’t
any t’s in it! This makes integration a lot easier, as the integral of a constant is just that
constant times the length of the interval:∫ |x|

0

e|x|

n!
· |x|ndt =

(
e|x|

n!
· |x|n

)
· t
∣∣∣|x|
0

= e|x| · |x|
n+1

n!
.

Again: to show that ex is equal to its Taylor series on all of R, we just need to show that
the remainder terms Rn(ex) always go to 0 as n goes to infinity. So, to finish our proof, it
suffices to show that

lim
n→∞

e|x| · |x|
n+1

n!
= 0.

This is not hard to see: simply notice that because the ratio of successive terms is just

e|x| · |x|
n+1

n!

e|x| · |x|
n

(n−1)!

=
|x|
n
,

as n goes to infinity the ratio between successive terms goes to 0. In specific, for n > 2|x|, the
ratio between any two consecutive terms is < 1

2 ; i.e. each consecutive term in our sequence
is at most half as big as the one that preceeded it. Therefore, the sequence converges to 0, as
any sequence consisting of numbers that you’re repeatedly chopping in half must converge
to 0.

We work a second example here:

Proposition 3.2. The Taylor series for f(x) = sin(x) about 0 is

∞∑
k=0

(−1)n
x2n+1

(2n+ 1)!

Furthermore, this series converges and is equal to sin(x) on all of R.

Proof. By induction, we know that for any n,

∂4n

∂x4n
(sin(x))

∣∣∣
0

= sin(x)
∣∣∣
0

= 0

∂4n+1

∂x4n+1
(sin(x))

∣∣∣
0

= cos(x)
∣∣∣
0

= 1

∂4n+2

∂x4n+2
(sin(x))

∣∣∣
0

= − sin(x)
∣∣∣
0

= 0

∂4n+3

∂x4n+3
(sin(x))

∣∣∣
0

= − cos(x)
∣∣∣
0

= −1.
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Consequently, we have that the 2n+ 1-st Taylor polynomial for sin(x) around 0 is just

T2n+1(sin(x), 0) =

n∑
k=0

(−1)n
x2n+1

(2n+ 1)!
,

because plugging in the derivatives of sin(x) into the formula for Taylor polynomials just
kills off every other term in the sum, and therefore that the Taylor series for sin(x) is

∞∑
k=0

(−1)n
x2n+1

(2n+ 1)!

Where does this series converge to sin(x)? Well: if we look at the Rn(sin(x)) terms, we
have by Taylor’s theorem that

Rn(sin(x)) =

∫ x

0

dn+1

dxn+1 (sin(x))x=t

n!
· (x− t)ndt.

Like before, we can simplify this expression by replacing several terms with upper bounds.
For example, we can replace dn+1

dxn+1 (sin(x))x=t with 1, because the derivatives of sin(x) are
all either ± sin(x) or ± cos(x), and in either case are bounded above in magnitude by 1; as
well, we can bound |(x− t)|n above by |x|n, for t ∈ [0, x]. This gives us

|Rn(sin(x))| ≤
∫ |x|
0

1

n!
· |x|ndt =

|x|n+1

n!
,

which goes to 0 as n goes to infinity, for any value of x. So sin(x) is equal to its Taylor
series on all of R, as claimed!

Given our success rate so far with approximating functions by Taylor series, you might
wonder why we bother with the Rn(f(x))-part of our proofs. The following example illus-
trates why it is that we *do* have to check that a Taylor series converges to its original
function; as it turns out, it’s possible for a function to have a Taylor series that is completely
useless for approximating it away from 0!

Example. Let

f(x) =

{
e−1/x

2
, x 6= 0

0, x = 0

Then T (f(x)) = 0, and T (f(x)) = f(x) only at x = 0.

Proof. So: derivatives of e−1/x
2

are tricky to directly calculate. However, we don’t have to!
Simply notice that we have

d

dx

(
e−1/x

2
)

=
2

x3
· e−1/x2

, and

d

dx

((
polynomials

polynomials

)
· e−1/x2

)
=

(
polynomials

polynomials

)′
· e−1/x2

+

(
polynomials

polynomials

)
· 2

x3
· e−1/x2

=

(
polynomials

polynomials

)
· e−1/x2

.

7



In other words, all of the derivatives of e−1/x
2

look like some ratio of polynomial expressions,
multiplied by e−1/x

2
. So, when we look at the limit as x goes to 0 of derivatives of e−1/x

2
,

we always have

lim
n→∞

(
polynomials

polynomials

)
· e−1/x2

= 0,

because the exponential term dominates (i.e. exponentials shrink faster than polynomials
can grow.)

So, while we don’t explicitly know the derivatives of f(x), we do know that they’re all
defined and equal to 0 at x = 0! So, the Taylor series of f(x) is just

∞∑
k=0

0

n!
· xn = 0,

which is only equal to f(x) at 0, because e−1/x
2 6= 0 for any x 6= 0.

Using similar techniques to the worked examples above, you can prove that the functions
below have the following Taylor series, and furthermore that they converge to their Taylor
series on the claimed sets:

Proposition 3.3.

T (cos(x)) =

∞∑
k=0

(−1)n
x2n

(2n)!
, and T (cos(x)) = cos(x) whenever x ∈ R.

T

(
1

1− x

)
=

∞∑
k=0

xn, and T

(
1

1− x

)
=

1

1− x
whenever x ∈ (−1, 1).

In addition, by substituting terms like −x2 into the above Taylor series, we can derive
Taylor series for other functions:

Proposition 3.4.

T (e−x
2
) =

∞∑
k=0

(−1)n
x2n

n!
, and T (e−x

2
) = e−x

2
whenever x ∈ R.

T

(
1

1 + x2

)
=

∞∑
k=0

(−1)nx2n, and T

(
1

1 + x2

)
=

1

1 + x2
whenever x ∈ (−1, 1).

3.1 Applications of Taylor Series

Using Taylor series, we can approximate integrals that would otherwise be impossible to
deal with. For example, consider the Gaussian integral:∫

e−x
2
dx.

Somwhat frustratingly, there is no “elementary” antiderivative for e−x
2
: in other words,

there is no finite combination of functions like sin(x), ex, xn that will give an antiderivative
of e−x

2
. Using Taylor series – i.e. an infinite number of functions – we can find this integral,

to any level of precision we desire! We outline the method below:
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Question 3.5. Approximate ∫ 1/2

−1/2
e−x

2
dx

to within ±.0001 of its actual value.

Proof. Above, we proved that

Tn(ex) =
n∑

k=0

xk

k!
.

Using this, we can write

e−x
2

= Tn(e−x)

∣∣∣∣∣
x2

+Rn(e−x)

∣∣∣∣∣
x2

,

and therefore write ∫ 2

0
e−x

2
dx =

∫ 2

0
Tn(e−x)

∣∣∣∣∣
x2

dx+

∫ 2

0
Rn(e−x)

∣∣∣∣∣
x2

dx.

Why is this nice? Well: the Tn part is just a polynomial: specifically, we have

Tn(e−x)

∣∣∣∣∣
x2

=
n∑

k=0

(−1)kx2k

k!
,

which is quite easy to integrate! As well, the Rn-thing is something that should be rather
small for large values of n: so in theory we should be able to make its integral small, as
well!

Specifically: using Taylor’s theorem and the estimates we came up with earlier in our
lectures, we have

|Rn(ex)| =
∣∣∣∣∫ x

0

et

n!
· (x− t)ndt

∣∣∣∣
≤
∫ |x|
0

e|x|

n!
· |x− t|ndt

≤
∫ |x|
0

e|x|

n!
· |x|ndt

=
e|x| · |x|n+1

n!

⇒

∣∣∣∣∣Rn(ex)

∣∣∣∣∣
−x2

∣∣∣∣∣ ≤ ex
2 · |x|2n+2

n!
.
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Using this, we can bound the integral of our remainder terms:∣∣∣∣∣
∫ 1/2

−1/2
Rn(e−x)

∣∣∣∣∣
x2

dx

∣∣∣∣∣ ≤ 2 ·
∫ 1/2

0

ex
2 · x2n+2

n!
dx

≤ 2 ·
∫ 1/2

0
e1/4 · x

2n+2

n!
dx

= 2e1/4 ·
(

x2n+3

(2n+ 3) · n!

) ∣∣∣1/2
0

=
e1/4

22n+2 · (2n+ 3) · n!

This quantity is ≤ .0001 at n = 3. Therefore, we know that

∫ 1/2

−1/2
e−x

2
dx =

∫ 1/2

−1/2
T3(e

x)

∣∣∣∣∣
x2

dx,

up to ±.0001.

So: to find this integral, it suffices to integrate T3(e
x)
∣∣∣
x2

. This is pretty easy:

∫ 1/2

−1/2
T3(e

x)

∣∣∣∣∣
x2

dx =

∫ 1/2

−1/2

(
1− x2 +

x4

2
− x6

6

)
dx

= 2 ·
∫ 1/2

0

(
1− x2 +

x4

2
− x6

6

)
dx

= 2 ·
(
x− x3

3
+
x5

10
− x7

42

) ∣∣∣∣∣
1/2

0

=
4133

4480
∼= .922545 . . .

So this is the integral of sin(x), up to ±.0001. Using Mathematica, we can see that the
actual integral is ∼= .922562, which verifies that our calculations worked!

We close with one last application of Taylor series to the calculation of limits, as an
alternate strategy to repeated applications of L’Hôpital’s rule:

Example. Find the limit

lim
n→∞

sin(x2)− x2 + x6

6

x10

Proof. One way we could solve this problem would be to hit it with L’Hôpital’s rule ten
times in a row, and get that we’re looking at the limit as x goes to 0 of the fraction

30240 cos(x2)− 403200x4 cos(x2) + 23040x8 cos(x2)− 302400x2 sin(x2) + 161280x6 sin(x2)− 1024x10 sin(x2)

10!
,
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which is just 30420
10! = 1

120 . And, you know, if you wanted to calculate ten derivatives in a
row, you could do that.

I . . . don’t. So: what’s a non-awful way to do this? Well: if we used sin(x)’s Taylor
series, we can notice that

sin(x2) =

∞∑
n=0

(−1)n
x4n+2

(2n+ 1)!
= x2 − x6

6
+
x10

5!
− . . . ,

and therefore that the fraction we’re working with is just

sin(x2)− x2 + x6

6

x10
=

(
x2 − x6

6 + x10

5! − . . .
)
− x2 + x6

6

x10

=
1

x10
·
(
x10

5!
− x14

7!
+
x18

9!
− . . .

)
=

1

5!
+

(
x4

7!
− x8

9!
+
x12

11!
− . . .

)
So: what does this do when x goes to 0? Well, the expression on the right is a power

series that converges on all of R, if we use absolute convergence ⇒ convergence along with
the ratio test. Therefore, it’s a continuous function! So, to find the limit, we just need to
plug in 0:

lim
x→0

sin(x2)− x2 + x6

6

x10
=

(
1

5!
+

(
x4

7!
− x8

9!
+
x12

11!
− . . .

)) ∣∣∣∣∣
x=0

=
1

5!

=
1

120
.

Which worked! And we didn’t have to calculate ten derivatives. Nice.
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