
Math 1d Instructor: Padraic Bartlett

Lecture 1: Sequences

Week 1 Caltech 2013

1 Sequences and Series

This week’s lectures in Math 8 are going to focus on sequences and convergence. We
list some basic definitions here:

1.1 Sequences: Definitions

Definition 1.1. A sequence of real numbers is a collection of real numbers {an}∞n=1

indexed by the natural numbers.

Definition 1.2. A sequence {an}∞n=1 is called bounded if there is some value B ∈ R such
that |an| < B, for every n ∈ N. Similarly, we say that a sequence is bounded above if
there is some value U such that an ≤ U,∀n, and say that a sequence is bounded below if
there is some value L such that an ≥ L,∀n.

Definition 1.3. A sequence {an}∞n=1 is said to be monotonically increasing if an ≤ an+1,
for every n ∈ N; conversely, a sequence is called monotonically decreasing if an ≥ an+1,
for every n ∈ N.

Definition 1.4. A sequence {an}∞n=1 converges to some value λ if the an’s “go to λ” at
infinity. To put it more formally, limn→∞ an = λ iff for any distance ε, there is some cutoff
point N such that for any n greater than this cutoff point, an must be within ε of our limit
λ.

In symbols:

lim
n→∞

an = λ iff (∀ε)(∃N)(∀n > N) |an − λ| < ε.

Convergence is one of the most useful properties of sequences! If you know that a
sequence converges to some value λ, you know, in a sense, where the sequence is “going,”
and furthermore know where almost all of its values are going to be (specifically, close to
λ.)

Because convergence is so useful, we’ve developed a number of tools for determining
where a sequence is converging to:

1.2 Sequences: Convergence Tools

1. The definition of convergence: The simplest way to show that a sequence con-
verges is sometimes just to use the definition of convergence. In other words, you
want to show that for any distance ε, you can eventually force the an’s to be within
ε of our limit, for n sufficiently large.

How can we do this? One method I’m fond of is the following approach:
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• First, examine the quantity |an − L|, and try to come up with a very simple
upper bound that depends on n and goes to zero. Example bounds we’d love to
run into: 1/n, 1/n2, 1/ log(log(n)).

• Using this simple upper bound, given ε > 0, determine a value of N such that
whenever n > N , our simple bound is less than ε. This is usually pretty easy:
because these simple bounds go to 0 as n gets large, there’s always some value
of N such that for any n > N , these simple bounds are as small as we want.

• Combine the two above results to show that for any ε, you can find a cutoff point
N such that for any n > N , |an − L| < ε.

2. Arithmetic and sequences: These tools let you combine previously-studied results
to get new ones. Specifically, we have the following results:

• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ an +
bn = (limn→∞ an) + (limn→∞ bn).

• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ anbn =
(limn→∞ an) · (limn→∞ bn).

• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6= 0 for all
n, then limn→∞

an
bn

= (limn→∞ an)/(limn→∞ bn).

3. Composition of sequences and functions: Suppose that f(x) is a continuous func-
tion and that {an}∞n=1 is a convergent sequence. Then limn→∞ f(an) = f (limn→∞ an) .
In other words, we can push continuous functions in and out of limits, as long as those
limits exist.

4. Monotone and bounded sequences: if the sequence {an}∞n=1 is bounded above and
nondecreasing, then it converges; similarly, if it is bounded above and nonincreasing,
it also converges. If a sequence is monotone, this is usually the easiest way to prove
that your sequence converges, as both monotone and bounded are “easy” properties
to work with. One interesting facet of this property is that it can tell you that a
sequence converges without necessarily telling you what it converges to! So, it’s often
of particular use in situations where you just want to show something converges, but
don’t actually know where it converges to.

5. Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist and are equal
to some value l, and the sequence {cn}∞n=1 is such that an ≤ cn ≤ bn, for all n, then the
limit limn→∞ cn exists and is also equal to l. This is particularly useful for sequences
with things like sin(horrible things) in them, as it allows you to “ignore” bounded bits
that aren’t changing where the sequence goes.

6. Cauchy sequences: We say that a sequence is Cauchy if and only if for every ε > 0
there is a natural number N such that for every m > n ≥ N , we have

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down” in the
limit – i.e. that if you look at points far along enough on a Cauchy sequence, they all
get fairly close to each other.
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The Cauchy theorem, in this situation, is the following: a sequence is Cauchy if and
only if it converges.

The Cauchy criterion doesn’t come up as often as the others in Math 1a (later in math-
ematics, however, it shows up pretty much everywhere!) Its main uses are for working
with series (we’ll have an example of this later, and define series later as well!), and
for sequences whose limits we don’t know: like the monotone-bounded-convergence
theorem, this result doesn’t need you to know where a sequence is converging to in
order to show that it converges.

1.3 Sequences: Applications of Convergence Tools

In this section, we work an example for each of these tools. We start by illustrating how to
prove a sequence converges using just the definition:

Claim 1. (Definition of convergence example:)

lim
n→∞

√
n+ 1−

√
n = 0.

Proof. When we discussed the definition as a convergence tool, we talked about a “blueprint”
for how to go about proving convergence from the definition: (1) start with |an − L|, (2)
try to find a simple upper bound on this quantity depending on n, and (3) use this simple
bound to find for any ε a value of N such that whenever n > N , we have

|an − L| < (simple upper bound) < ε.

Let’s try this! Specifically, examine the quantity |
√
n+ 1−

√
n− 0|:

|
√
n+ 1−

√
n− 0| =

√
n+ 1−

√
n

=
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

<
1√
n
.

All we did here was hit our |an−L| quantity with a ton of random algebra, and kept trying
things until we got something simple. The specifics aren’t as important as the idea here:
just start with the |an − L| bit, and try everything until it’s bounded by something simple
and small!

In our specific case, we’ve acquired the upper bound 1√
n

, which looks rather simple: so

let’s see if we can use it to find a value of N .
Take any ε < 0. If we want to make our simple bound 1√

n
< ε, this is equivalent to

making 1
ε <
√
n, i.e 1

ε2
< n. So, if we pick N > 1

ε2
, we know that whenever n > N , we have

n > 1
ε2

, and therefore that our simple bound is < ε. But this is exactly what we wanted!
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In specific, for any ε > 0, we’ve found a N such that for any n > N , we have

|
√
n+ 1−

√
n− 0| < 1√

n
<

1√
N
< ε,

which is the definition of convergence. So we’ve proven that limn→∞
√
n+ 1−

√
n = 0.

Claim 2. (Arithmetic and Sequences example:) The sequence

a1 = 1,

an+1 =
√

1 + a2n

does not converge.

Proof. We proceed by contradiction: in other words, suppose that this sequence does con-
verge to some value L, say. Then, examine the limit

lim
n→∞

a2n.

Because squaring things is a continuous operation, we know that

lim
n→∞

a2n = ( lim
n→∞

an)2 = L2.

However, we can also use the recursive definition of the an’s to see that

lim
n→∞

a2n = lim
n→∞

(√
1 + a2n−1

)2

= lim
n→∞

(1 + a2n−1)

However, we know that limn→∞ a
2
n−1 = limn→∞ a

2
n = L2, because the two sequences are the

same (just shifted over one place) and thus have the same behavior at infinity. Therefore,
we know that both limn→∞ 1 and limn→∞ a

2
n−1 both exist: as a result, we can apply our

result on arithmetic and sequences to see that

lim
n→∞

(1 + a2n−1) =
(

lim
n→∞

1
)

+
(

lim
n→∞

a2n−1

)
= 1 + L2.

So, we’ve just shown that L2 = 1 + L2: i.e. 0 = 1. This is clearly nonsense: so we’ve
arrived at a contradiction. Therefore, our original assumption (that our sequence {an}∞n=1

converged must be false – i.e. this sequence must diverge, as claimed.

Claim 3. (Another arithmetic and sequences example:) For any two positive real numbers
x > y > 0, show that

lim
n→∞

xn − yn

xn + yn
= 1.
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Proof. Using the fact that 0 < y < x, write y = cx, for some positive real number c < 1.
Then, our limit is just

lim
n→∞

xn − (cx)n

xn + (cx)n
= lim

n→∞

xn − cnxn

xn + cnxn
= lim

n→∞

xn(1− cn)

xn(1 + cn)
= lim

n→∞

1− cn

1 + cn
.

Now, notice that because 0 < c < 1, limn→∞ 1 − cn = limn→∞ 1 + cn = 1. Because of
this, we can move our limit above into the fraction (because both the top and bottom limits
exist,) and get

lim
n→∞

1− cn

1 + cn
=

limn→∞ 1− cn

limn→∞ 1 + cn
=

1

1
= 1.

So our original limit is 1, as claimed.

Claim 4. (Monotone convergence theorem example:)

lim
n→∞

21/n = 1.

Proof. Let’s start by using the monotone-bounded convergence theorem to show that the
sequence {21/n}∞n=1 converges (without worrying about what it actually converges *to* yet.)
To do this, we need to just do two things: show that our sequence is monotone-decreasing
and that it is bounded below.

Monotone-decreasing: we claim that

2
1

n+1 < 2
1
n .

To see this, raise the left and right-hand-sides to the power n(n+ 1), and simplify:

2
1

n+1 < 2
1
n

⇔ 2
n(n+1)
n+1 < 2

n(n+1)
n

⇔ 2n < 2n+1

⇔ 1 < 2.

So our claim is equivalent to the inequality 1 < 2, which is trivially true: so our sequence
is monotonically decreasing, as claimed.

We claim that 1 is a lower bound: i.e. that 21/n > 1, for every n. To see this, just raise
both sides to the n-th power; we can do this without disturbing our inequality because both
sides are positive. This tells us that 21/n > 1 is equivalent to the claim 2 > 1, which we
know to be true.

So our sequence is monotone and bounded: by the monotone-bounded convergence
theorem, it must converge to some value L.

Claim 5. (Continuity and sequences example:)

lim
n→∞

21/n = 1.
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Proof. First, recall from Math 1 that the function x 7→ 2x is continuous and well-defined
on the real numbers. Therefore, because the limit limn→∞

1
n exists, we can use our result

on continuity and sequences to say that

lim
n→∞

21/n = 2limn→∞
1
n = 20 = 1.

Claim 6. (Squeeze theorem example:)

lim
n→∞

sin

(
n2 · πne−12n · nn

. .
.
n
)

n
= 0.

Proof. The idea of squeeze theorem examples is that they allow you to get rid of awful-
looking things whenever they aren’t materially changing where the sequence is actually
going. Specifically, in our example here, the sin(terrible things) part is awful to work with,
but really isn’t doing anything to our sequence: the relevant part is the denominator, which
is going to infinity (and therefore forcing our sequence to go to 0.

Rigorously: we have that

−1 ≤ sin(terrible things) ≤ 1,

no matter what terrible things we’ve put into the sin function. Dividing the left and right
by n, we have that

− 1

n
≤ sin(terrible things)

n
≤ 1

n
,

for every n. Then, because limn→∞− 1
n = limn→∞

1
n = 0, the squeeze theorem tells us that

lim
n→∞

sin

(
n2 · πne−12n · nn

. .
.
n
)

n
= 0

as well.
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