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1 Power Series

The motivation for power series, roughly speaking, is the observation that polynomials
are really quite nice. Specifically, if I give you a polynomial, you can

• differentiate and take integrals easily,

• add and multiply polynomials together and easily express the result as another poly-
nomial,

• find its roots,

and do most anything else that you’d ever want to do to a function! One of the only
downsides to polynomials, in fact, is that there are functions that aren’t polynomials! In
specific, the very useful functions

sin(x), cos(x), ln(x), ex,
1

x

are all not polynomials, and yet are remarkably useful/frequently occuring objects.
So: it would be nice if we could have some way of “generalizing” the idea of polynomials,

so that we could describe functions like the above in some sort of polynomial-ish way –
possibly, say, as polynomials of “infinite degree?” How can we do that?

The answer, as you may have guessed, is via power series:

Definition 1.1. A power series P (x) centered at x0 is just a “series of functions” of the
following form:

P (x) =
∞∑
n=0

an · xn.

A power series is uniquely determined by its coefficients, the sequence of numbers {an}∞n=1.

Just like with normal series, the main thing we are interested in with power series is
convergence. Specifically, consider the easier-to-work-with case of pointwise convergence;
in this situation, we are now asking for which values of x does the series of numbers

∑
anx

n

converge.
Sometimes, a power series does not converge on all of its values:

Example 1.2. Consider the power series

P (x) =
∞∑
n=0

xn.

There are values of x which, when plugged into our power series P (x), yield a series that
fails to converge.
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Proof. There are many such values of x. One example is x = 1, as this yields the series

P (x) =
∞∑
n=0

1,

which clearly fails to converge; another example is x = −1, which yields the series

P (x) =
∞∑
n=0

(−1)n.

The partial sums of this series form the sequence {1, 0, 1, 0, 1, 0, . . .}, which clearly fails to
converge1.

Now, suppose that we want to find all of the values on which a given power series
converges. The above piecemeal procedure of just trying various points seems like a bad
strategy; there are a lot more numbers in R than we have paper. Thankfully, the folllowing
theorem, which you can prove using the comparison test and a little bit of work, saves us a
lot of casework:

Theorem 1. Suppose that

P (x) =
∞∑
n=0

anx
n

is a power series that converges at some value R ∈ R. Then P (x) actually converges on
every value in the interval (−R,R).

In particular, if we use the comparison test, the result above gives us the following
powerful corollary:

Corollary 2. Suppose that

P (x) =
∞∑
n=0

anx
n

is a power series centered at 0, and A is the set of all real numbers on which P (x) converges.
Then there are only six cases for A: either

1. A = {0},

2. A = one of the four intervals (−R,R), [−R,R), (−R,R], [−R,R], for some R ∈ R, or

3. A = R.

We say that a power series P (x) has radius of convergence 0 in the first case, R in the
second case, and ∞ in the third case.

A question we could ask, given the above result, is the following: can we actually get
all of those cases to occur? I.e. can we find power series that converge only at 0? On all of
R? On only an open interval?

To answer these questions, consider the following examples:

1Though it wants to converge to 1/2. Go to wikipedia and read up on Grandi’s series for more informa-
tion!
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Example 1.3. The power series

P (x) =

∞∑
n=1

n! · xn

converges when x = 0, and diverges everywhere else.

Proof. That this series converges for x = 0 is trivial, as it’s just the all-0 series.
To prove that it diverges whenever x 6= 0: pick any x > 0. Then the ratio test says that

this series diverges if the limit

lim
n→∞

(n + 1)!xn+1

n! · xn
= lim

n→∞
x(n + 1) = +∞

is > 1, which it is. So this series diverges for all x > 0. By applying our theorem about
radii of convergence of power series, we know that our series can only converge at 0: this
is because if it were to converge at any negative value −x, it would have to converge on all
of (−x, x), which is a set containing positive real numbers.

Example 1.4. The power series

P (x) =
∞∑
n=1

xn

converges when x ∈ (−1, 1), and diverges everywhere else.

Proof. Take any x > 0, as before, and apply the ratio test:

lim
n→∞

xn+1

xn
= x.

So the series diverges for x > 1 and converges for 0 ≤ x < 1: therefore, it has radius of
convergence 1, using our theorem, and converges on all of (−1, 1). As for the two endpoints
x = ±1: in our earlier discussion of power series, we proved that P (x) diverged at both 1
and −1. So this power series converges on (−1, 1) and diverges everywhere else.

Example 1.5. The power series

P (x) =
∞∑
n=1

xn

n

converges when x ∈ [−1, 1), and diverges everywhere else.

Proof. Take any x > 0, and apply the ratio test:

lim
n→∞

xn+1/(n + 1)

xn/n
= lim

n→∞
x · n

n + 1
= lim

n→∞
x ·
(

1− 1

n + 1

)
= x.

So, again, we know that the series diverges for x > 1 and converges for 0 ≤ x < 1: therefore,
it has radius of convergence 1, using our theorem, and converges on all of (−1, 1). As for
the two endpoints x = ±1, we know that plugging in 1 yields the harmonic series (which
diverges) and plugging in −1 yields the alternating harmonic series (which converges.) So
this power series converges on [−1, 1) and diverges everywhere else.
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Example 1.6. The power series

P (x) =
∞∑
n=1

xn

n2

converges when x ∈ [−1, 1], and diverges everywhere else.

Proof. Take any x > 0, and apply the ratio test:

lim
n→∞

xn+1/(n + 1)2

xn/n2
= lim

n→∞
x ·
(

n

n + 1

)2

= lim
n→∞

x ·
(

1− 1

n + 1

)2

= x.

So, again, we know that the series diverges for x > 1 and converges for 0 ≤ x < 1:
therefore, it has radius of convergence 1, using our theorem, and converges on all of (−1, 1).
As for the two endpoints x = ±1, we know that plugging in 1 yields the series

∑ 1
n2 ,

which we’ve shown converges. Plugging in −1 yields the series
∑ (−1)n

n2 : because the series
of termwise-absolute-values converges, we know that this series converges absolutely, and
therefore converges.

So this power series converges on [−1, 1] and diverges everywhere else.

Example 1.7. The power series

P (x) =

∞∑
n=0

0 · xn

converges on all of R.

Proof. P (x) = 0, for any x, which is an exceptionally convergent series.

Example 1.8. The power series

P (x) =
∞∑
n=0

xn

n!

converges on all of R.

Proof. Take any x > 0, and apply the ratio test:

lim
n→∞

xn+1/(n + 1)!

xn/n!
= lim

n→∞

x

n + 1
= 0.

So this series converges for any x > 0: applying our theorem about radii of convergence
tells us that this series must converge on all of R!
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