Math 1d	Instructor: Padraic Bartlett	
	Lecture 4: Power Series	
Week 4		Caltech 2013

1 Power Series

The motivation for power series, roughly speaking, is the observation that polynomials are really quite nice. Specifically, if I give you a polynomial, you can

- differentiate and take integrals easily,
- add and multiply polynomials together and easily express the result as another polynomial,
- find its roots,
and do most anything else that you'd ever want to do to a function! One of the only downsides to polynomials, in fact, is that there are functions that aren't polynomials! In specific, the very useful functions

$$
\sin (x), \cos (x), \ln (x), e^{x}, \frac{1}{x}
$$

are all not polynomials, and yet are remarkably useful/frequently occuring objects.
So: it would be nice if we could have some way of "generalizing" the idea of polynomials, so that we could describe functions like the above in some sort of polynomial-ish way possibly, say, as polynomials of "infinite degree?" How can we do that?

The answer, as you may have guessed, is via power series:
Definition 1.1. A power series $P(x)$ centered at x_{0} is just a "series of functions" of the following form:

$$
P(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n} .
$$

A power series is uniquely determined by its coefficients, the sequence of numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Just like with normal series, the main thing we are interested in with power series is convergence. Specifically, consider the easier-to-work-with case of pointwise convergence; in this situation, we are now asking for which values of x does the series of numbers $\sum a_{n} x^{n}$ converge.

Sometimes, a power series does not converge on all of its values:
Example 1.2. Consider the power series

$$
P(x)=\sum_{n=0}^{\infty} x^{n} .
$$

There are values of x which, when plugged into our power series $P(x)$, yield a series that fails to converge.

Proof. There are many such values of x. One example is $x=1$, as this yields the series

$$
P(x)=\sum_{n=0}^{\infty} 1,
$$

which clearly fails to converge; another example is $x=-1$, which yields the series

$$
P(x)=\sum_{n=0}^{\infty}(-1)^{n} .
$$

The partial sums of this series form the sequence $\{1,0,1,0,1,0, \ldots\}$, which clearly fails to converge ${ }^{1}$.

Now, suppose that we want to find all of the values on which a given power series converges. The above piecemeal procedure of just trying various points seems like a bad strategy; there are a lot more numbers in \mathbb{R} than we have paper. Thankfully, the folllowing theorem, which you can prove using the comparison test and a little bit of work, saves us a lot of casework:

Theorem 1. Suppose that

$$
P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is a power series that converges at some value $R \in \mathbb{R}$. Then $P(x)$ actually converges on every value in the interval $(-R, R)$.

In particular, if we use the comparison test, the result above gives us the following powerful corollary:
Corollary 2. Suppose that

$$
P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is a power series centered at 0 , and A is the set of all real numbers on which $P(x)$ converges. Then there are only six cases for A : either

1. $A=\{0\}$,
2. $A=$ one of the four intervals $(-R, R),[-R, R),(-R, R],[-R, R]$, for some $R \in \mathbb{R}$, or
3. $A=\mathbb{R}$.

We say that a power series $P(x)$ has radius of convergence 0 in the first case, R in the second case, and ∞ in the third case.

A question we could ask, given the above result, is the following: can we actually get all of those cases to occur? I.e. can we find power series that converge only at 0 ? On all of \mathbb{R} ? On only an open interval?

To answer these questions, consider the following examples:

[^0]Example 1.3. The power series

$$
P(x)=\sum_{n=1}^{\infty} n!\cdot x^{n}
$$

converges when $x=0$, and diverges everywhere else.
Proof. That this series converges for $x=0$ is trivial, as it's just the all- 0 series.
To prove that it diverges whenever $x \neq 0$: pick any $x>0$. Then the ratio test says that this series diverges if the limit

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!x^{n+1}}{n!\cdot x^{n}}=\lim _{n \rightarrow \infty} x(n+1)=+\infty
$$

is >1, which it is. So this series diverges for all $x>0$. By applying our theorem about radii of convergence of power series, we know that our series can only converge at 0 : this is because if it were to converge at any negative value $-x$, it would have to converge on all of $(-x, x)$, which is a set containing positive real numbers.

Example 1.4. The power series

$$
P(x)=\sum_{n=1}^{\infty} x^{n}
$$

converges when $x \in(-1,1)$, and diverges everywhere else.
Proof. Take any $x>0$, as before, and apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{x^{n}}=x
$$

So the series diverges for $x>1$ and converges for $0 \leq x<1$: therefore, it has radius of convergence 1 , using our theorem, and converges on all of $(-1,1)$. As for the two endpoints $x= \pm 1$: in our earlier discussion of power series, we proved that $P(x)$ diverged at both 1 and -1 . So this power series converges on $(-1,1)$ and diverges everywhere else.

Example 1.5. The power series

$$
P(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

converges when $x \in[-1,1)$, and diverges everywhere else.
Proof. Take any $x>0$, and apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1} /(n+1)}{x^{n} / n}=\lim _{n \rightarrow \infty} x \cdot \frac{n}{n+1}=\lim _{n \rightarrow \infty} x \cdot\left(1-\frac{1}{n+1}\right)=x .
$$

So, again, we know that the series diverges for $x>1$ and converges for $0 \leq x<1$: therefore, it has radius of convergence 1 , using our theorem, and converges on all of $(-1,1)$. As for the two endpoints $x= \pm 1$, we know that plugging in 1 yields the harmonic series (which diverges) and plugging in -1 yields the alternating harmonic series (which converges.) So this power series converges on $[-1,1)$ and diverges everywhere else.

Example 1.6. The power series

$$
P(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

converges when $x \in[-1,1]$, and diverges everywhere else.
Proof. Take any $x>0$, and apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1} /(n+1)^{2}}{x^{n} / n^{2}}=\lim _{n \rightarrow \infty} x \cdot\left(\frac{n}{n+1}\right)^{2}=\lim _{n \rightarrow \infty} x \cdot\left(1-\frac{1}{n+1}\right)^{2}=x
$$

So, again, we know that the series diverges for $x>1$ and converges for $0 \leq x<1$: therefore, it has radius of convergence 1 , using our theorem, and converges on all of $(-1,1)$. As for the two endpoints $x= \pm 1$, we know that plugging in 1 yields the series $\sum \frac{1}{n^{2}}$, which we've shown converges. Plugging in -1 yields the series $\sum \frac{(-1)^{n}}{n^{2}}$: because the series of termwise-absolute-values converges, we know that this series converges absolutely, and therefore converges.

So this power series converges on $[-1,1]$ and diverges everywhere else.
Example 1.7. The power series

$$
P(x)=\sum_{n=0}^{\infty} 0 \cdot x^{n}
$$

converges on all of \mathbb{R}.
Proof. $P(x)=0$, for any x , which is an exceptionally convergent series.
Example 1.8. The power series

$$
P(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges on all of \mathbb{R}.
Proof. Take any $x>0$, and apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1} /(n+1)!}{x^{n} / n!}=\lim _{n \rightarrow \infty} \frac{x}{n+1}=0 .
$$

So this series converges for any $x>0$: applying our theorem about radii of convergence tells us that this series must converge on all of \mathbb{R} !

[^0]: ${ }^{1}$ Though it wants to converge to $1 / 2$. Go to wikipedia and read up on Grandi's series for more information!

