MATH 8, SECTION 1, WEEK 2 - RECITATION NOTES

TA: PADRAIC BARTLETT

ABSTRACT. These are the notes from Friday, Oct. 8th’s lecture. In this talk,
we study sequences.

1. RANDOM QUESTION

Question 1.1. First, prove that you cannot cover R with disjoint circles of positive
radis. Then, find a way to cover R? with disjoint circles of positive radii!

2. SEQUENCES: WORKING FROM THE BASICS

In our last lecture, we introduced the notion of convergence:

Definition 2.1. A sequence {a,,}52; converges to some value A if, for any distance
€, the a,’s are eventually within € of A. To put it more formally, lim, o a, = A
iff for any distance €, there is some cutoff point N such that for any n greater than
this cutoff point, a,, must be within € of our limit .
In symbols:
lim a, = A iff (Ve)(IN)(Vn > N) |a, — A| <e.
n—oo
Most people are generally pretty good with developing an “intuition” for what
convergence means; when it comes to actually proving that a sequence converges,
however, it’s easy to get confused. How do you find your N7 What does it mean
to have actually proved convergence?
In general, proofs that a given sequence {a, }52; converges to some value L will
go as follows:

e First, examine the quantity |a,, — L|, and try to come up with a very simple
upper bound that depends on n and goes to zero. Example bounds we’d
love to run into: 1/n,1/n?,1/log(log(n)).

e Using this upper bound, given € > 0, determine a value of N such that
whenever n > N, our simple bound is less than e.

e Combine the two above results to show that for any €, you can find a cutoff
point N such that for any n > N, |a,, — L] < €.

We work one example of this method here:

Claim 2.2.

lim vVn+1—+/n=0.

n—oo
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Proof. As suggested above, let’s examine the quantity |[v/n +1 —+/n — 0.
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This looks rather simple: so let’s see if we can use it to find a value of V.
Take any € < 0. If we want to make ﬁ < €, we merely need to pick N such

that ﬁ < ¢, and then select n > N.
This then tells us that for any € > 0, we can find a N such that for any n > N,
we have
|\/n+1—\/ﬁ—0|<—<—<6
vn /N

which is the definition of convergence. So we’ve proven that lim,, ., vn+1—y/n =
0. O

3. SEQUENCES: USEFUL TOOLS

The above method will almost always work; often, however, it can take a lot of
work and is ponderous. Consequently, we’ve developed the following tools to make
our lives easier:

(1) Arithmetic and Sequences:

o Additivity of sequences: if lim,_, o an,lim, . b, both exist, then
limy, 00 @p + by, = (limy 00 ap) + (limy, 00 by).

o Multiplicativity of sequences: if lim,, oo @y, lim,_, o b, both exist, then
limy, 00 @nby = (limy, 00 ay) - (limy 00 by)-

e Quotients of sequences: if lim, . an,lim,_, o, b, both exist, and b,, #
0 for all n, then lim,, o ‘;—: = (limy— 00 @y )/ (limy, o0 by).

(2) Monotone and Bounded Sequences: if the sequence {a, }52 ; is bounded
above and nondecreasing, then it converges; similarly, if it is bounded above
and nonincreasing, it also converges.

(3) Squeeze theorem for sequences: if lim, o an,lim, o b, both exist
and are equal to some value [, and the sequence {c, }22, is such that a,, <
¢n < by, for all n, then the limit lim,, ., ¢, exists and is also equal to [.

(4) Cauchy sequences A sequence is Cauchy' iff it converges.

e say that a sequence is Cauchy if and only if for every e > 0 there is a natural number N
such that for every m,n > N
lam — an| < €.

You can think of this condition as saying that Cauchy sequences “settle down” in the limit —
i.e. that if you look at points far along enough on a Cauchy sequence, they all get fairly close to
each other.
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This next section consists of example of these tools in action:

4. SEQUENCES: WORKED EXAMPLES

Claim 4.1. (Arithmetic and Sequences example) The sequence a; = 1,ap4+1 =
V14 a2 does not converge.

Proof. We proceed by contradiction. Suppose that some limit L of the sequence
{a,}22; exists. Then, examine the limit

lim a2.
n— 00 n

Because convergent sequences are multiplicative, we know that
lim o = (lim a,)-(lim a,)=L-L= L%
n—oo n—oo n—oo

However, we can also use the recursive definition of the a,’s to see that

2
: 2 _ / 2
nlgrolo a, = nlgrgo ( 1+ anl)

= nli_)rréo(l +ap_y)
=1+ (nlggo an_y)

=1+ (B, anr) - (1, Gnn)-

However, we know that lim,, . a,_1 = lim,, . a,, because the two sequences are
the same (just shifted over one place) and thus have the same behavior at infinity.
So we have in fact that

lim a2 =1+ (lim a,_1)-(lim a, 1) =14+ L
n— 00 n—o0o n—00

and thus that L2 = 1 + L2, a contradiction. [l

Claim 4.2. (Cauchy sequence example) The sequence
"1
= 72
k=1
converges.

Proof. To show that this sequence converges, we will use the Cauchy convergence
tool, which tells us that sequences converge iff they are Cauchy.

How do we prove that a sequence is Cauchy? As it turns out, we can use a
similar blueprint to the methods we used to show that a sequence converges:

e First, examine the quantity |a,, — an|, and try to come up with a very
simple upper bound that depends on m and n and goes to zero. Example
bounds we’d love to run into: #, o #g(n). Things that won’t work:
(if n is really big compared to m, we're doomed!), 73 (same!), 4.

e Using this upper bound, given € > 0, determine a value of N such that

whenever m and n > N, our simple bound is less than e.
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e Combine the two above results to show that for any €, you can find a cutoff
point N such that for any m,n > N, |a,, — a,| < €.
Let’s apply the above blueprint, and study |a,, — a,|. Assume that m > n here;
the other case will look the exact same (if you flip m and n throughout the proof),
so we omit it by symmetry.
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This looks fairly simple!

Moving onto the second step: given € > 0, we want to force this quantity %—i— % <
€. How can we do this? Well: if n,m > N, we have that % + % < %; so it suffices
to pick NN such that % < e.

Thus,we’ve shown that for any € > 0 we can find a N such that for any m,n > N,

1 1 2
|amfan|<ﬁ+a<ﬁ<e.
But this just means that our sequence is Cauchy! So, because all Cauchy sequences
converge, we’ve proven that our sequence converges. (I
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