MATH 8, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

ABSTRACT. These are the notes from Friday, Oct. 22nd’s lecture. In this
talk, we wrap up a number of loose ends relating to continuity and limits,
discussing one-sided limits, limits at infinity, the intermediate value theorem,
and the concepts of open, closed, and bounded sets.

1. RANDOM QUESTION

Question 1.1. Can you find a function f:[0,1] — [0, 1]such that

e f is continuous,

e f(0)=0,f(1)=1, and

o [ takes on every value in the interval (0,1) exactly once? Twice? Three
times? n times? Infinitely many times?

Today’s lecture is kind of a grab-bag of topics; where Monday and Wednesday’s
lectures were devoted to exploring a pair of complicated topics slowly and carefully,
most of the ideas in today’s lecture are relatively short and sweet. Consequently,
we’ll move at a faster pace; there are about four concepts that we should cover
today, each of which is hopefully a little related to the others and should be useful
in your study of limits and continuity.

2. ONE-SIDED LiMITS
Let’s start with something fairly elementary: the concept of a one-sided limit:
Definition 2.1. For a function f: X — Y, we say that
lim f(z)=1L

r—at
if and only if

(1) (vague:) as z goes to a from the right-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

Ve >0,30 >0s.t. Ve € X, (Jx —a| < dand z > a) = (|f(z) — L] <e).
Similarly, we say that
lim f(z)=1L

Tr—a—
if and only if

(1) (vague:) as z goes to a from the left-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

Ve>0,30 >0s.t. Ve € X, (Jx —a| < dand x < a) = (|f(z) — L| <e).

1



2 TA: PADRAIC BARTLETT

Basically, this is just our original definition of a limit except we’re only looking at
x-values on one side of the limit point a: hence the name “one-sided limit.” Thus,
our methods for calculating these limits are pretty much identical to the methods
we introduced on Monday: we work one example below, just to reinforce what we'’re
doing here.

Claim 2.2.
x
lim u =1
z—0t T
Proof. First, examine the quantity
|z|
ot

For = > 0, we have that

therefore, for any € > 0, it doesn’t even matter what  we pick! — because for any
x with 0 < x, we have that

lel

1‘=0<e.
T

Thus, the limit as %‘ approaches 0 from the right hand side is 1, as claimed. O

One-sided limits are particularly useful when we’re discussing limits at infinity,
as we describe in the next section:

3. LIMITS AT INFINITY
Definition 3.1. For a function f: X — Y, we say that
lim f(z)=1L

r—+00
if and only if

(1) (vague:) as x goes to “infinity,” f(x) goes to L.
(2) (concrete, symbols:)

Ve >0,IN st. Ve e X, (x> N) = (|f(z) — L| < e).
Similarly, we say that

lim f(z)=1L

T——00
if and only if

(1) (vague:) as x goes to “negative infinity,” f(z) goes to L.
(2) (concrete, symbols:)

Ve > 0,3N s.t. Ve € X, (z < N) = (|f(z) — L| < ¢).

In class, we described a rather useful trick for calculating limits at infinity:
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Proposition 3.2. For any function f : X =Y,

. . 1

Similarly,

lim f(z)= lim f <1)
&= —00 z—0- x

The use of this theorem is that it translates limits at infinity (which can be
somewhat complex to examine) into limits at 0, which can be in some sense a lot
easier to deal with: as opposed to worrying about what a function does at extremely
large values, we can just consider what a different function does at rather small
values (which can make our lives often a lot easier.)

Here’s an example, to illustrate where this comes in handy:

Claim 3.3.

. 32?2 +cos(34z) +10"-x 3
lim =—.
r— 400 202 +1 2

Proof. Motivated by our proposition above, let us subsitute 1/z for x, so that we
have

. 32?4+ cos(34z) + 107 - . 3(1/x)? + cos(34/z) + 107 - (1/z)
lim = lim .
T—+00 222 +1 z—0+ 2(1/x)2+1

Multiplying both top and bottom by z2, this limit is equal to
. 3+ 2%cos(34/x) +107 -
lim .
z—0t 2+ 22
Because limits play nicely with arithmetic, we know that the limit of this ratio is
the ratio of the two limits 3 + 22 cos(34/z) + 107 - z and 2 + 22, if and only iff
both limits exist.

But that’s simple to see: because 2 + 2 is a polynomial, it’s continuous, and
thus

lim 2+ 22=2+0%=2.

r—0+
As well, because
3—224+1-"2<3+a%cos(34/x)+ 10" -z <3+ 22 +1-" -z,
and both of those polynomials converge to 3 as z — 0T, the squeeze theorem tells
us that
lim 34 27 cos(34/z) +10" -2 =3
z—0*t
as well.
Thus, because both limits exist, we have that
I 3+ x2cos(34/2) +107 -2 lim,_,0+ (3 + 2% cos(34/x) + 107 -z) 3
im = =2,
20+ 2 + 22 limy, g+ (2 + 22) 2

as claimed. 0

One useful application of limits at infinity comes through studying the interme-
diate value theorem, which is the subject of our next section:
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4. THE INTERMEDIATE VALUE THEOREM

Theorem 4.1. If f is a continuous function on [a,b], then f takes on every value
between f(a) and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes
on both positive and negative values on some interval; in this case, the intermediate
value theorem tells us that this function must have a zero between each pair of sign
changes. Basically, when you have a question that’s asking you to find zeroes of
a function, or to show that a function with prescribed endpoint behavior takes on
some other values, the IVT is the way to go.

To illustrate this, consider the following example:

Claim 4.2. If p(z) is an odd-degree polynomial, it has a root in R — i.e. there is
some x € R such that p(x) = 0.

Proof. Write
p(z) =ap+ a1z + ...+ apz™,

where n is an odd natural number and a,, > 0. (The case where a,, < 0 is identical
to the proof we're about to do if you flip all of the inequalities, so we omit it here
by symmetry.)

Then, notice that

. ao—i—...—&—ana:"_ . ag ay Ap—1
rBI-&r-loom—”_rBTDO<x7 x"*1+".+ x +an)
Cdm (%) 4 (L ~
- EEIJPOO (LL'”) + mgrfoo (l‘n*l) et rgr%r}oo (an)
=0+...+0+ay,
= Qn,

(where the second line is justified because all of the individual limits exist.)

As a result, we know that for large positive values of z, w is as close to
an as we would like. Specifically, we know that for large values of x, we have that
the distance between 2t=Fme” and g, is less than, say, a, /2. As a consequence,
we have specifically that w is positive, for large positive values of x —
thus, for some large positive x, we have that

n
P e L (positive) - (positive) = (positive).

xn
Similarly, because
n
lim M: lim (@—F ! 4+ Gn-1 +an)
T——00 x™ z——oo \ " g1

- o :
=04+...+0+ay,
= Qn,

ag+..tanz”
=

we also have that for large negative values of z, is as close to a, as

we’d like, and thus that a”mﬂ is positive, for large negative values of x.
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Thus, for some large negative value of x, we have that

ag+ ... +apx”

- % = (negative) - (positive) = (negative).

(Notice that the fact that n was odd was used in the above calculation, to insure
that z negative implies that =™ is negative.)

We have thus shown that our polynomial adopts at least one positive and one

negative value: thus, by the intermediate value theorem, it must be 0 somewhere

between these two values! Thus, our polynomial has a root, as claimed. [

5. OPEN, CLOSED, AND BOUNDED SETS

Finally, we make something of a detour here, to quickly define open, closed, and
bounded sets:

Definition 5.1. A set X C R is called open if for any = € X, there is some
neighborhood 4, of = such that the entire interval (z — §,,x + d,) lies in X.
Example 5.2.

The sets R and () are both trivially open sets.

Any open interval (a,b) is an open set.

The union® of arbitrarily many open sets is open.
The intersection 2 of finitely many open sets is open.

Definition 5.3. A set X C R is called closed if its complement?® is open.
Example 5.4.

e The sets R and () are both trivially closed sets. Note that this means that
some sets can be both open and closed!

e Any closed interval [a,b] is an closed set.

e The intersection of arbitarily many closed sets is closed.

e The union of finitely many closed sets is closed.

Definition 5.5. A set X C R is bounded iff there is some value M € R such that
—M <z <M, for any x € X.

We will work more closely with these definitions in future lectures: however, for
now, it suffices to note the following useful theorem, which we’ll use heavily in our
discussion of the derivative:

Theorem 5.6. (Extremal value theorem:) If f: X — Y is a continuous function,
and X is a closed and bounded subset X of R, then f attains its minima and
mazima. In other words, there are values m, M € X such that for any x € X,

flm) < f(z) < f(M).

IThe union X UY of two sets X,Y is the set {a:a € X or a € Y, or both.}
2The intersection X NY of two sets X,Y is the set {a:a € X and a € Y.}
3The complement X¢ of a set X is the set {a:a ¢ X}
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