
MATH 8, SECTION 1, WEEK 9 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Monday, Nov. 22nd’s lecture, where we

started our discussion of Taylor series.

1. Random Question

More gladiatorial arenas! This time: you’re in the center of a perfect circle.
Somewhere on the boundary of this circle there’s a lion, who is restrained by chains
to only run along the boundary of the circle. You know the following things to be
true:

• The lion runs precisely four times as fast as you can.
• Both you and the lion are point-masses that can change direction instantly.
• Both you and the lion are arbitrarily brilliant.

Can you escape the circle?

2. Taylor Series: Definitions and Theorems

Definition 2.1. Let f(x) be a n-times differentiable function on some neighbor-
hood (a − δ, a + δ) of some point a. We define the n-th Taylor polynomial of
f(x) around a as the following degree-n polynomial:

Tn(f(x), a) :=

n∑
n=0

f (n)(a)

n!
· (x− a)n.

Notice that this function’s first n derivatives all agree with f(x)’s derivatives:
i.e. for any k ≤ n,

∂k

∂xk
(Tn(f(x), a))

∣∣∣
a

= f (k)(a).

This, perhaps, motivates the idea of these Taylor polynomials as “approxima-
tions” to the function f(x), and suggests the following definition for the n-th order
remainder function of f(x) around a:

Rn(f(x), a) = f(x)− Tn(f(x), a).

If f is an infinitely-differentiable function, and limn→∞Rn(f(x), a) = 0 at some
value of x, then we can say that these Taylor polynomials converge to f(x), and in
fact write f(x) as its Taylor series at that point:

f(x) =

∞∑
n=0

f (n)(a)

n!
· (x− a)n.

It bears noting that just because a function is infinitely differentiable, its Taylor
series can still diverge. (Specifically, in our next lecture, we will discuss a function
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whose Taylor series only converges at 0, and is completely useless everywhere else.)
So be careful!

Theorem 2.2. (Taylor’s theorem:) If f(x) is a n+ 1-times differentiable function
on some neighborhood (a− δ, a+ δ) of some point a and x > a is in (a− δ, a+ δ),
then there is some point c in the neighborhood (a, x) such that

Rn(f(x), a) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

The above theorem can be quite useful in determining whether a function’s
Taylor polynomials will converge to the function itself. For example, we know that

Rn(ex, 0) =
ec

(n+ 1)!
xn+1,

for some value of c ∈ (0, x). Consequently, because n! grows much faster than
ex · xn, we know that

∀x ∈ R, lim
n→∞

Rn(ex, 0) = 0,

and thus that

ex =

∞∑
n=0

ex
∣∣∣
0

n!
· xn =

∞∑
n=0

xn

n!
.

Another example to consider is the function f(x) = sin(x). By induction, we
know that for any n,

∂4n

∂x4n
(sin(x))

∣∣∣
0

= sin(x)
∣∣∣
0

= 0

∂4n+1

∂x4n+1
(sin(x))

∣∣∣
0

= cos(x)
∣∣∣
0

= 1

∂4n+2

∂x4n+2
(sin(x))

∣∣∣
0

= − sin(x)
∣∣∣
0

= 0

∂4n+3

∂x4n+3
(sin(x))

∣∣∣
0

= − cos(x)
∣∣∣
0

= −1.

Consequently, we have that the 2n+ 1-st Taylor polynomial for sin(x) around 0
is just

T2n+1(sin(x), 0) =

n∑
k=0

(−1)n
x2n+1

(2n+ 1)!
,

because plugging in the derivatives of sin(x) into the formula for Taylor polynomials
just kills off every other term in the sum.

Graphing several of these polynomials helps describe why these functions can be
thought of as kinds of “approximations:”
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In the picture above, the polynomials (drawn in color) are increasingly good ap-
proximations to sin(x) near 0. It bears noting that each of these polynomials are
still only good approximations *near* 0 – far away from 0, all of these finite-degree
polynomials go to ±∞, while sin(x) remains bounded by ±1.

The best way to get a handle on Taylor series is probably to just start using
them: in our next section, we do exactly that.

3. Taylor Series: Applications

3.1. Proving e is Irrational. This section is devoted to proving the following
claim:

Lemma 3.1. e is irrational.

Proof. As we often do when we have no idea how to proceed directly: we proceed
by contradiction, and assume instead that e = a

b , for some pair of positive integers
a, b.

Earlier in lecture, we established that

Tn(ex, 0) =

n∑
n=0

xn

n!
;

so, if we plug in x = 1, we get in fact that

e1 = e =
a

b
= Tn(ex, 0)

∣∣∣
1

+Rn(ex, 0)
∣∣∣
1
.

=

(
1 +

x

1
+
x2

2!
+ . . .+

xn

n!

) ∣∣∣
1

+Rn(ex, 0)
∣∣∣
1
.

=

(
1 +

1

1
+

1

2!
+ . . .+

1

n!

)
+Rn(ex, 0)

∣∣∣
1
.
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Choose n > b, 3, and multiply everything through by n!. This yields the equation

n!
a

b
=

(
n! +

n!

1
+
n!

2!
+ . . .+

n!

n!

)
+ n! ·

(
Rn(ex, 0)

∣∣∣
1

)
.

By our assumption on n, we know that n!ab is an integer; similarly, we know that

all of
(
n! + n!

1 + . . .+ n!
n!

)
is also an integer. Consequently, because the sum and

difference of integers is always integral, we know that
(
Rn(ex, 0)

∣∣∣
1

)
is an integer

as well!
However, by Taylor’s theorem, we know that there is some value of c ∈ (0, 1)

such that

Rn(ex, 0)
∣∣∣
1

=

∂n+1

∂xn+1 (ex)
∣∣∣
c

(n+ 1)!
1n+1 =

ec

(n+ 1)!
.

We know that 0 < ec < 3 for every c ∈ (0, 1) : consequently, we know that

0 < Rn(ex, 0)
∣∣∣
1
<

3

(n+ 1)!

⇒0 < n! ·Rn(ex, 0)
∣∣∣
1
<

3

n+ 1

Because n > 3, we know that 3
(n+1) < 3

4 : consequently, we in fact have that

n! ·Rn(ex, 0)
∣∣∣
1

is an integer between 0 and 3/4. As no such thing exists, we have a

contradiction! Therefore e must be irrational, as we claimed. �

3.2. The Binomial Theorem. In high school, many of you probably saw the
following theorem:

Lemma 3.2.

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k,

where
(
n
k

)
= n!

k!·(n−k)! .

Here, we will prove a generalization of this theorem:

Lemma 3.3. For any real number a ∈ R, define(
a

k

)
=
a · (a− 1) · . . . · (a− k + 1)

k!
.

(In the case where a ∈ N, it bears noting that this agrees with our earlier definition
for

(
a
k

)
.)

Then, for any triple of real numbers x, y, a, with 0 < x < y, we have

(x+ y)a =

∞∑
k=0

(
a

k

)
xkyn−k.
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Proof. We first make the following claim:

∂k

∂xk
(x+ y)a = a · (a− 1) · . . . · (a− k + 1) · (x+ y)a−k.

We prove this by induction. The base case, k = 1, is trivial, because

∂

∂x
(x+ y)a = a(x+ y)a−1.

For the inductive step, assume that

∂k

∂xk
(x+ y)a = a · (a− 1) · . . . · (a− k + 1) · (x+ y)a−k,

and examine

∂k+1

∂xk+1
(x+ y)a =

∂

∂x

(
∂k

∂xk
(x+ y)a

)
.

By the inductive hypothesis, this is just

∂

∂x

(
a · (a− 1) · . . . · (a− k + 1) · (x+ y)a−k

)
=
(
a · (a− 1) · . . . · (a− k + 1) · (a− k) · (x+ y)a−k−1

)
,

which is our inductive claim for k + 1. So we’ve proved our claim for all k ∈ N!
Consequently, if we evaluate at x = 0, we have that

∂k

∂xk
(x+ y)a

∣∣∣
x=0

= a · (a− 1) · . . . · (a− k + 1) · (y)a−k,

and thus that the n-th Taylor polynomial for (x+ y)a, thought of as a function of
one variable x, expanded around 0, is

Tn((x+ y)a, 0) =

n∑
k=0

a · (a− 1) · . . . · (a− k + 1) · ya−k

k!
xk

=

n∑
k=0

a · (a− 1) · . . . · (a− k + 1)

k!
ya−kxk

=

n∑
k=0

(
a

k

)
ya−kxk.

As well, we know that the n-th remainder polynomial for (x+ y)a is

Rn((x+ y)a, 0) =

∂n+1

∂xn+1 (x+ y)a
∣∣∣
x=c

(n+ 1)!
xn+1

=
a · (a− 1) · . . . · (a− n)(c+ y)a−n−1

(n+ 1)!
xn+1

=

(
a

n+ 1

)
xn+1(c+ y)a−n−1,

for some c ∈ (0, x).
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Now: notice that for any k ∈ N, if a is positive, we have that∣∣∣∣ a− k
n+ 1− k

∣∣∣∣ ≤ a

n+ 1− k

⇒
∣∣∣∣( a

n+ 1

)∣∣∣∣ ≤ ( a

n+ 1

)n+1

,

and if a is negative, we have∣∣∣∣ a− k
n+ 1− k

∣∣∣∣ ≤ n+ 1− a
n+ 1− k

⇒
∣∣∣∣( a

n+ 1

)∣∣∣∣ ≤ (n+ 1− a
n+ 1

)n+1

=

(
1− a

n+ 1

)n+1

.

Because

• limn→∞

∣∣∣ a
n+1

∣∣∣n+1

= 0 (as (n+ 1)n+1 grows much faster than an+1,) and

• limn→∞

(
1− a

n+1

)n+1

= e−a,

we know that in particular for fixed a, the quantity
∣∣(a

k

)∣∣ is bounded above by some
constant Ma that doesn’t depend on k.

Consequently, we know that

Rn((x+ y)a, 0) ≤Ma · xn+1(c+ y)a−n−1.

Because x < y and c > 0, we know that x < c + y; consequently, we know that
limn→∞ xn+1·(c+y)a−(n+1) must be 0, as the (c+y)-part eventually overtakes the x-
part. Therefore for very large values of n, these remainder functions Rn((x+y)a, 0)
converge to 0. Consequently, we know that we can write (x+ y)a as just the limit
of its Taylor polynomials: i.e. that

(x+ y)a =

∞∑
k=0

(
a

k

)
xkyn−k.
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