
Math 8 Instructor: Padraic Bartlett

Lecture 10: Taylor Series

Week 10 Caltech - Fall, 2011

1 Random Questions

Question 1.1. Show that
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Question 1.2. The complete bipartite graph Kn,n is the following graph on 2n vertices:
Consider the following graph:

• V = X ∪ Y,X = {x1, x2, . . . xn}, Y = {y1, y2, . . . yn}.

• E = {pairs of points (x, y) such that x ∈ X, y ∈ Y }.

Given a graph G, we can define a drawing of G as a way of associating the elements of
V with distinct points in R2, and the elements (x, y) of E with curves drawn in the plane
that connect the two points x and y.

Given a specific drawing of a graph, we can define the crossing number of this drawing
as the number of places where two distinct edges cross each other. For example, in the
drawing below, there are precisely 3 crossings:

The crossing number of a graph is the smallest crossing number of any drawing of
that graph. Show that K2,2 has crossing number 0, show that K3,3 has crossing number at
least 1, and try1 to find the crossing number for Kn,n in general.

1This question for Kn,n is Turán’s brick factory problem, a beautiful and currently open problem in
mathematics.
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2 Taylor Polynomials and Series

When we first introduced the idea of the derivative in week 5, one of the motivations we
offered was the idea of the derivative f ′(x) as a sort of “linear approximation” to f(x):
essentially, given a function f(x), the derivative f ′(x) was telling us the instantaneous slope
of our function at the point x. Consequently, if we wanted to approximate our function at
the point a, we could just use the function f(a) + x · f ′(a); this “linear approximation” is
often a decent replacement for the function itself, for values of x very close to a.

As mathematicians, we love overkill. So: if one derivative was useful, why not use n
derivatives? This, roughly, is the motivation for Taylor series and polynomials:

Definition 2.1. Let f(x) be a n-times differentiable function on some neighborhood (a−
δ, a + δ) of some point a. We define the n-th Taylor polynomial of f(x) around a as
the following degree-n polynomial:

Tn(f(x), a) :=
n∑
n=0

f (n)(a)

n!
· (x− a)n.

Notice that this function’s first n derivatives all agree with f(x)’s derivatives: i.e. for
any k ≤ n,

∂k

∂xk
(Tn(f(x), a))

∣∣∣
a

= f (k)(a).

This motivates the idea of these Taylor polynomials as “n-th order approximations at
a” of the function f(x): if you only look at the first n derivatives of this function at a, they
agree with this function completely.

We define the n-th order remainder function of f(x) around a as the difference
between f(x) and its n-th order approximation Tn(f(x), a):

Rn(f(x), a) = f(x)− Tn(f(x), a).

If f is an infinitely-differentiable function, and limn→∞Rn(f(x), a) = 0 at some value of
x, then we can say that these Taylor polynomials converge to f(x), and in fact write f(x)
as its Taylor series:

T (f(x)) =
∞∑
n=0

f (n)(a)

n!
· (x− a)n.

Often, we will assume that our Taylor series are being expanded around a = 0, and omit
the a-part of the expressions above. If it is not specified, always assume that you’re looking
at a Taylor series expanded around 0.

One of the largest questions, given a function f(x), is the following: at which values of
x is f(x) equal to its Taylor series? Equivalently, our question is the following: for what
values of x is limn→∞Rn(f(x)) = 0?

Our only/most useful tool for answering this question is the following theorem of Taylor:
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Theorem 2.2. (Taylor’s theorem:) If f(x) is a n+ 1-times differentiable function on some
neighborhood of a point a and x > a is within this neighborhood, then

Rn(f(x), a) =

∫ x

a

f (n+1)(t)

n!
· (x− t)ndt.

In other words, we can express the remainder (a quantity we will often not understand) as
an integral involving the derivatives of f divided by n! (which is often easily bounded) and
polynomials (which are also easy to deal with.)

The main use of Taylor series is the following observation, which basically states that
integration and differentiation of Taylor series is amazingly easy:

Theorem 2.3. Suppose that f(x) is a function with Taylor series

T (f(x)) =

∞∑
n=0

f (n)(a)

n!
· (x− a)n,

and furthermore suppose that f(x) = T (f(x)) on some interval (−a, a). Then we can
integrate and differentiate f(x) by just termwise integrating and differentiating T (f(x)):
i.e.

d

dx
f(x) =

∞∑
n=0

d

dx

(
f (n)(a)

n!
· (x− a)n

)
=
∞∑
n=0

f (n)(a)

(n− 1)!
· (x− a)n−1, and

∫
f(x)dx =

∞∑
n=0

∫ (
f (n)(a)

n!
· (x− a)n

)
dx =

∞∑
n=0

f (n)(a)

(n+ 1)!
· (x− a)n+1 + C.

In the following section, we study several functions, find their Taylor series, and use
these results to perform calculations that are otherwise remarkably difficult:

3 Taylor Series: Applications

Proposition 3.1. The Taylor series for f(x) = ex about 0 is

∞∑
n=0

xn

n!
.

Furthermore, this series converges and is equal to ex on all of R.

Proof. So: first, notice that

dn

dx
(ex) = ex,

and therefore that

T (ex) =

∞∑
n=0

f (n)(0)

n!
· xn =

∞∑
n=0

e0

n!
· xn =

∞∑
n=0

xn

n!
.
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Furthermore, by using Taylor’s theorem, we know that the remainder term Rn(ex) is just

Rn(ex) =

∫ x

0

f (n+1)(t)

n!
· (x− t)ndt =

∫ x

0

et

n!
· (x− t)ndt.

Integrating this directly seems. . . painful. However, we don’t need to know exactly what
this integral is: we just need to know that it gets really small as n goes to infinity! So,
instead of calculating this integral directly, we can just come up with some upper bounds
on its magnitude.

Specifically: on the interval [0, x], the function |et| takes on its maximum at t = x, where
it’s ex, and the function |(x− t)n| takes on its maximum at t = 0, where it’s xn. Therefore,
we have that ∣∣∣∣∫ x

0

et

n!
· (x− t)ndt

∣∣∣∣ ≤ ∫ x

0

ex

n!
· xndt.

But the function being integrated at the right is just a constant with respect to t: there
aren’t any t’s in it! This makes integration a lot easier:∫ x

0

ex

n!
· xndt =

(
ex

n!
· xn

)
· t

∣∣∣∣∣
x

0

= ex · x · x
n+1

n!
.

Again: to show that ex is equal to its Taylor series on all of R, we just need to show that
the remainder terms Rn(ex) always go to 0 as n goes to infinity. So, to finish our proof, it
suffices to show that

lim
n→∞

ex · x · x
n

n!
= 0.

This is not hard to see. Specifically, pick any k ≥ 3 ∈ N, and let n > kx. Then we have
that

xn

n!
=

xd2xe

(d2xe)!
· xn−d2xe

(d2xe+ 1) · . . . · n

≤ xd2xe · x · x · . . . · x
2x · 2x · . . . · 2x

= xd2xe · 1

2n−d2xe

Because d2xe is a fixed constant, letting n go to infinity in the above bound clearly goes to
0: therefore, we’ve proven that the remainder terms Rn(ex) go to 0 as n goes to infinity,
and therefore that ex is equal to its Taylor series everywhere.

Using similar techniques, you can prove that the functions below have the following
Taylor series, and furthermore converge to their Taylor series on the claimed sets:
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Proposition 3.2.

T (cos(x)) =

∞∑
k=0

(−1)n
x2n

(2n)!
, and T (cos(x)) = cos(x) whenever x ∈ R.

T (sin(x)) =

∞∑
k=0

(−1)n
x2n+1

(2n+ 1)!
, and T (sin(x)) = sin(x) whenever x ∈ R.

T (ln(1− x)) =
∞∑
k=1

−x
n

n
, and T (ln(1− x)) = ln(1− x) whenever x ∈ [−1, 1).

T

(
1

1− x

)
=
∞∑
k=0

xn, and T

(
1

1− x

)
=

1

1− x
whenever x ∈ (−1, 1).

For f(x) =

{
e−1/x

2
, x 6= 0

0, x = 0
, T (f(x)) = 0, and T (f(x)) = f(x) only at x = 0.

In addition, by substituting terms like −x2 into the above Taylor series, we can derive
Taylor series for other functions:

Proposition 3.3.

T (e−x
2
) =

∞∑
k=0

(−1)n
x2n

n!
, and T (e−x

2
) = e−x

2
whenever x ∈ R.

T

(
1

1 + x2

)
=

∞∑
k=0

(−1)nx2n, and T

(
1

1 + x2

)
=

1

1 + x2
whenever x ∈ (−1, 1).

Using Taylor series, we can approximate integrals that we could otherwise not calculate.
For example, consider the Gaussian integral, which we ran into a few weeks ago on the HW:∫

e−x
2
dx.

Much to our frustration at the time, we saw that there was no “elementary” antiderivative
for e−x

2
: in other words, there is no finite combination of functions like sin(x), ex, xn that

will give an antiderivative of e−x
2
. This made working with this integral nigh-impossible:

short of using rectangles and taking limits, we had no nice way of actually calculating any
definite Gaussian integral!

Using Taylor series, however, we now can find this integral, to any level of precision we
desire! We outline the method here, in the following example:

Question 3.4. Approximate ∫ 2

0
e−x

2
dx

to within ±.1 of its actual value.
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Proof. Above, we proved that

Tn(ex) =
n∑
k=0

xk

k!
.

Using this, we can write

e−x
2

= Tn(e−x)

∣∣∣∣∣
x2

+Rn(e−x)

∣∣∣∣∣
x2

,

and therefore write ∫ 2

0
e−x

2
dx =

∫ 2

0
Tn(e−x)

∣∣∣∣∣
x2

dx+

∫ 2

0
Rn(e−x)

∣∣∣∣∣
x2

dx.

Why is this nice? Well: the Tn part is just a polynomial: specifically, we have

Tn(e−x)

∣∣∣∣∣
x2

=
n∑
k=0

(−1)kx2k

k!
,

which is quite easy to integrate! As well, the Rn-thing is something that should be rather
small for large values of n: so in theory we should be able to make its integral small, as
well!

Specifically: using Taylor’s theorem, we have that

Rn(e−x) =

∫ x

0

e−t

n!
· (x− t)ndt

⇒ Rn(e−x)

∣∣∣∣∣
x2

=

∫ x2

0

e−t

n!
· (x2 − t)ndt

Just like before, this is an integral we don’t want to calculate: however, just like before, we
don’t have to! In particular, notice that on the interval [0, x2], the maximum value of e−t

is at t = 0, where it’s e0 = 1, and the maximum value of (x2 − t)n is at t = 0, where it’s

x2n. Therefore, we can bound the absolute value
∣∣∣Rn(e−x)

∣∣∣
x2

∣∣∣ of our remainder terms by

∫ x2

0

x2n

n!
dt =

(
x2n

n!

) ∣∣∣∣∣
x2

0

=
x2n+2

n!
.

Using this, we can finally bound the integral of our remainder terms:∣∣∣∣∫ 2

0
Rn(e−x)

∣∣∣
x2
dx

∣∣∣∣ ≤ ∫ 2

0

x2n+2

n!
dx =

x2n+3

(2n+ 3)n!

∣∣∣∣∣
2

0

=
22n+3

(2n+ 3)n!
.

This quantity is ≤ .1 at n = 11. Therefore, we’ve proven that
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∫ 2

0
e−x

2
dx =

∫ 2

0
T11(e

−x)

∣∣∣∣∣
x2

dx,

up to ±.1.

So: to find this integral, it suffices to integrate Tn(e−x)

∣∣∣∣∣
x2

. This is pretty easy, if

calculationally awkward:

∫ 2

0
T11(e

−x)

∣∣∣∣∣
x2

dx =

∫ 2

0

1∑
1k=0

(−1)kx2k

k!
dx

=

1∑
1k=0

∫ 2

0

(−1)kx2k

k!
dx

=

1∑
1k=0

(
(−1)kx2k+1

(2k + 1)k!

) ∣∣∣∣∣
2

0

≈.9 .

So our integral is .9± .1.

Finally, to close our last regular lecture of the quarter, we perform a little bit of math-
ematical magic:

4 Magic

Above, we showed using Taylor series that we could express sin(x), cos(x) and ex as power
series:

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− . . . ,

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− . . . , and

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . .

One thing you might have noticed when calculating these power series is that they look
remarkably similar: specifically, the sin(x) power series looks like the odd parts of the ex

power series, while the cos(x) power series looks like the even parts of the ex power series.
Well, kinda: the sin(x) and cos(x) series alternate signs, while the ex term does not.

Still. Is there any way we could somehow “fix” that alternating-sign thing, so that we
could derive some sort of relation between sin(x), cos(x), and ex? In other words, is there
anything we could plug into the sin(x), cos(x) power series to make them not alternate sign?
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Surprisingly, the answer is yes! Specifically, consider the complex number i =
√
−1! In

particular, notice that

{in}∞n=0 = 1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . . ,

and therefore that

sin(ix) = ix− (ix)3

3!
+

(ix)5

5!
− (ix)7

7!
+

(ix)9

9!
− . . .

= ix+ i
x3

3!
+ i

x5

5!
+ i

x7

7!
+ i

x9

9!
+ . . . , and

cos(ix) = 1− (ix)2

2!
+

(ix)4

4!
− (ix)6

6!
+

(ix)8

8!
− . . .

= 1 +
x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ . . ..

Therefore, we have that cos(ix) is exactly the even terms of ex’s power series, while sin(ix)
is just i times the odd terms of ex’s power series: i.e. that

ex = cos(ix)− i sin(ix).

Plugging in iπ for x gives us in particular that

eiπ = cos(−π)− i sin(−π). = −1,

i.e.

eiπ + 1 = 0.

Which is absolutely gorgeous. In one succinct, beautiful formula, we’ve linked every
single major mathematical constant together: e, π, i, 1, and 0. This equality is popularly
known as Euler’s formula: Richard Feynman once described it as “one of the most remark-
able, almost astounding, formulas in all of mathematics.”

It’s a good place to finish our lectures for this year.
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