
Math 8 Instructor: Padraic Bartlett

Midterm Review

Week 5 Caltech 2012

The following is kind of a condensed, “Cliffs-Notes”-style review of the course thus far;
here, we list all of the major theorems and results we’ve covered thus far, and talk a little
bit about when we would use these theorems. Basically, this is the last four and a half
weeks in one handout; if you want to see *examples* of how these things are actually used,
consult the online notes for those particular weeks!

1 Proof Methods

Basically, you are all – as a class –quite capable with proof methods; so there’s not a lot
to say here. However, it is worth it to mention the structure of an inductive proof again,
as it’s been a while since we’ve used induction (as opposed to direct proofs or proofs by
contradiction!), and a lot of people get tripped up on the structure of these things:

1.1 Proofs by Induction

Suppose that you have a claim P (n) – a sentence like “2n ≥ n”, for example. How do
we prove that this kind of thing holds by induction? Well: we generally follow the outline
below:

Claim 1. P (n) holds, for all n ≥ k.

Proof.
Base case: we prove (by hand) that P (k) holds, for a few base cases.
Inductive step: Assuming that P (m) holds for all k ≤ m < n, prove that P (n) holds.
Conclusion: P (n) holds for all n ≥ k.

2 Sequences

2.1 Definitions

A sequence is just an infinite collection of objects {an}∞n=1 indexed by the natural numbers.
The main property that we’ve studied about sequences in this class is that of convergence:

Definition. A sequence {an}∞n=1 converges to some value λ if, for any distance ε, the an’s
are eventually within ε of λ. To put it more formally, limn→∞ an = λ iff for any distance ε,
there is some cutoff point N such that for any n greater than this cutoff point, an must be
within ε of our limit λ.

In symbols:

lim
n→∞

an = λ iff (∀ε)(∃N)(∀n > N) |an − λ| < ε.
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2.2 Tools

We have the following tools for manipulating and studying sequences:

1. Arithmetic and Sequences:

• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ an +
bn = (limn→∞ an) + (limn→∞ bn).

• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ anbn =
(limn→∞ an) · (limn→∞ bn).

• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6= 0 for all
n, then limn→∞

an
bn

= (limn→∞ an)/(limn→∞ bn).

When using these properties, please remember to show that both of the limits
limn→∞ an, limn→∞ bn exist before splitting them apart! TAs will dock you mad points
for failing to do this, as it is one of the most common ways for people to make errors
in limit calculations.

2. Monotone and Bounded Sequences: if the sequence {an}∞n=1 is bounded above
and nondecreasing, then it converges; similarly, if it is bounded above and nonincreas-
ing, it also converges. This is a useful trick if you’ve ran into a sequence that you
have no idea where it converges to, but just need to show that it goes *somewhere*.

3. Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist and are equal
to some value l, and the sequence {cn}∞n=1 is such that an ≤ cn ≤ bn, for all n, then
the limit limn→∞ cn exists and is also equal to l. Basically, whenever you’re studying
a sequence whose terms are really complex and messed-up, use the squeeze theorem
to bound it above and below by something simple you understand – i.e. if you were
looking at an = n−2 sin(n), you could bound this above and below by ±n−2.

4. Cauchy sequences A sequence is Cauchy1 iff it converges. For the most part, this
doesn’t come up in calculations; it’s more of a tool for proving other theorems (at
least, this is the case for as much calculus as we’ve covered.)

2.3 Applications

Pretty much everything else we’ve looked at in this class can be thought of as an “applica-
tion” of sequences: the largest/most obvious example of this, however, is series, the subject
of the next section:

3 Series

3.1 Definitions

We defined three main concepts in our work with series, which we repeat here:

1We say that a sequence is Cauchy if and only if for every ε > 0 there is a natural number N such that
for every m,n ≥ N

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down” in the limit – i.e. that if
you look at points far along enough on a Cauchy sequence, they all get fairly close to each other.

2



Definition. A sequence is called summable if the sequence {sn}∞n=1 of partial sums

sn := a1 + . . . an

converges. If it does, we then call the limit of this sequence the sum of the an, and denote
this quantity by writing

∞∑
n=1

an.

We call such infinite sums series.

Definition. A series
∑∞

n=1 an converges absolutely iff the series
∑∞

n=1 |an| converges; it
converges conditionally iff the series

∑∞
n=1 an converges but the series of absolute values∑∞

n=1 |an| diverges.

Definition. For a series of the form2
∑∞

n=0 anx
n, we say that the radius of convergence

of this series is some value R ∈ R such that

• if x is a real number such that |x| < R,
∑∞

n=0 anx
n converges, and

• if x is a real number such that |x| > R,
∑∞

n=0 anx
n diverges.

3.2 Tools

Direct calculations of series are often rather difficult; consequently, we have developed the
following tools for manipulating them:

1. Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences such that 0 ≤ an ≤ bn,
then the following statement is true:( ∞∑

n=1

bn converges

)
⇒

( ∞∑
n=1

an converges

)
.

When to use this test: when you’re looking at something fairly complicated that either
(1) you can bound above by something simple that converges, like

∑
1/n2, or (2) that

you can bound below by something simple that diverges, like
∑

1/n.

2. Limit Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences of positive
numbers such that

lim
n→∞

an
bn

= c 6= 0,

then the following statement is true:( ∞∑
n=1

bn converges

)
⇔

( ∞∑
n=1

an converges

)
.

When to use this test: typically, when you see something like a quotient of really
complicated polynomials. It works a lot like the normal comparison test, and merits
consideration in many of the same situations.

2Such series are called power series, because they are a series made out of increasing powers of xn.
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3. Alternating Series Test: If {an}∞n=1 is a sequence of numbers such that

• limn→∞ an = 0 monotonically, and

• the an’s alternate in sign, then

the series
∑∞

n=1 an converges.

When to use this test: when you have an alternating series.

4. Ratio Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

an+1

an
= r,

then we have the following three possibilities:

• If r < 1, then the series
∑∞

n=1 an converges.

• If r > 1, then the series
∑∞

n=1 an diverges.

• If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: when you have something that is growing kind of like a geo-
metric series: so when you have terms like 2n or n!.

5. Root Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

n
√
an = r,

then we have the following three possibilities:

• If r < 1, then the series
∑∞

n=1 an converges.

• If r > 1, then the series
∑∞

n=1 an diverges.

• If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: mostly, in similar situations to the ratio test. Basically, if the
ratio test fails, there’s a small chance that this will work instead.

6. Absolute Convergence and Convergence: If {an}∞n=1 is a sequence of positive
numbers such that

∞∑
n=1

|an|

converges, then so does

∞∑
n=1

an.

When to use this test: whenever you have a series of terms that are not all of the
same sign, and yet aren’t strictly alternating. This is pretty much your only tool to
deal with mixed-sign series that aren’t solved by the alternating series test: so, if you
have to deal with anything like cos(n)/2n, reach for this theorem first.
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7. Vanishing criterion: If limn→∞ an 6= 0, then the series

∞∑
n=1

an

diverges. When to use this theorem: basically, whenever you’re looking at a series
made out of things that don’t converge to 0, like (−1)n. Note that the converse DOES
NOT HOLD: i.e. just because the terms of a series go to zero, this doesn’t mean
that the series itself converges! Consider the harmonic series

∑ 1
n : this diverges, even

though its terms go to 0

3.3 Applications

The main applications of series are integrals, which we haven’t discussed yet; so, for the
most part, our study of series has been focused on just calculations and manipulations of
specific series (rather than any specific applications.) It is worth recalling the following
facts, however:

∞∑
n=1

1

n
diverges,

∞∑
n=1

(−1)n

n
converges,

∞∑
n=1

1

n2
=
π2

6
and thus converges; finally,

∞∑
n=1

1

xn
converges iff x < 1, in which case it is equal to

x

1− x
.

4 Limits and Continuity

4.1 Definitions

In the fourth week of our course, we turned to the study of limits of functions; here, we
encountered our first ε − δ proofs, and began to work with the notion of continuity. We
review several key definitions here:

Definition. If f : X → Y is a function between two subsets X,Y of R, we say that

lim
x→a

f(x) = L

if and only if

1. (vague:) as x approaches a, f(x) approaches L.

2. (precise; wordy:) for any distance ε > 0, there is some neighborhood δ > 0 of a such
that whenever x ∈ X is within δ of a, f(x) is within ε of L.
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3. (precise; symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ)⇒ (|f(x)− L| < ε).

Definition. A function f : X → Y is said to be continuous at some point a ∈ X iff

lim
x→a

f(x) = f(a).

Definition. For a function f : X → Y , we say that

lim
x→a+

f(x) = L

if and only if

1. (vague:) as x goes to a from the right-hand-side, f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x > a)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→a−

f(x) = L

if and only if

1. (vague:) as x goes to a from the left-hand-side, f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x < a)⇒ (|f(x)− L| < ε).

Definition. For a function f : X → Y , we say that

lim
x→+∞

f(x) = L

if and only if

1. (vague:) as x goes to “infinity,” f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x > N)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→−∞

f(x) = L

if and only if

1. (vague:) as x goes to “negative infinity,” f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0, ∃N s.t. ∀x ∈ X, (x < N)⇒ (|f(x)− L| < ε).
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4.2 Tools

As before, we developed several useful tools and blueprints for dealing with limits, which
we review here:

1. A blueprint for proving that certain limits do not exist: In class, we proved
the following lemma:

Lemma 2. For any function f : X → Y , we know that limx→a f(x) 6= L iff there is
some sequence {an}∞n=1 with the following properties:

• limn→∞ an = L, and

• limn→∞ f(an) 6= L, and

This lemma makes proving that a function f is discontinuous at some point a remark-
ably easy:

• to prove that limx→a f(x) 6= L,

• all we have to do is just find *one* sequence {an}∞n=1 that converges to a, such
that limn→∞ f(an) 6= L on that sequence! Basically, it allows us to work in the
world of sequences instead of that of continuity, which can make life a lot easier
on us.

2. Squeeze theorem: If f, g, h are functions defined on some interval I \{a}3 such that

f(x) ≤ g(x) ≤ h(x), ∀x ∈ I \ {a}, and

lim
x→a

f(x) = lim
x→a

h(x),

then limx→a g(x) exists, and is equal to the other two limits limx→a f(x), limx→a h(x).
Basically, use this theorem like the squeeze theorem for sequences: whenever you see
something rather complicated and want to take its limit, try to simply bound it above
and below by simple things that you can calculate! This is really useful at studying
functions that have trigonometric functions as factors (like x2 sin(1/x), for example.)

3. Limits and arithmetic: If f, g are a pair of functions such that limx→a f(x),
limx→a g(x) both exist, then we have the following equalities:

lim
x→a

(αf(x) + βg(x)) = α
(

lim
x→a

f(x)
)

+ β
(

lim
x→a

g(x)
)

lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)

lim
x→a

(
f(x)

g(x)

)
=
(

lim
x→a

f(x)
)
/
(

lim
x→a

g(x)
)
, if lim

x→a
g(x) 6= 0.

3The set X \ Y is simply the set formed by taking all of the elements in X that are not elements in Y .
The symbol \, in this context, is called “set-minus”, and denotes the idea of “taking away” one set from
another.
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4. Limits and composition: If f : Y → Z is a function such that limy→a f(x) = L,
and g : X → Y is a function such that limx→b g(x) = a, then

lim
x→b

f(g(x)) = L.

Specifically, if both functions are continuous, their composition is continuous.

Basically, between these three theorems and the results we know from class (ex, sin, cos,
and the polynomials are continuous), you should be able to do most of your limit cal-
culations without touching an ε or δ.

4.3 Applications

There are two key applications of continuity which we have discussed in class: we review
them here:

Theorem. (Intermediate Value Theorem): If f is a continuous function on [a, b], then f
takes on every value between f(a) and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes on both
positive and negative values on some interval; in this case, the intermediate value theorem
tells us that this function must have a zero between each pair of sign changes. Basically,
when you have a question that’s asking you to find zeroes of a function, or to show that a
function with prescribed endpoint behavior takes on some other values, the IVT is the way
to go.

Theorem. (Extremal value theorem:) If f : X → Y is a continuous function, and X is a
closed and bounded subset X of R, then f attains its minima and maxima. In other words,
there are values m,M ∈ X such that for any x ∈ X, f(m) ≤ f(x) ≤ f(M).

We didn’t really use this theorem too often for direct calculations (as it only tells you that
maxima and minima are attained, but not what they are!) – basically, its main use was in
proving one of the applications of differentiation, in our next section!

5 Differentiation

For the midterm, you’re liable for the material covered on Monday this week (week 5) in
class: so you should know what a derivative is and how to find it, but not much else, I
think.

5.1 Definitions

Definition. For a function f defined on some neighborhood (a− δ, a+ δ), we say that f is
differentiable at a iff the limit

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
exists. If it does, denote this limit as f ′(a); we will often call this value the derivative of
f at a.

The derivative has a number of interpretations as physical phenomena; notably, if f(x)
is a function that calculates distance with respect to some time t, you can think of the
derivative f ′(t) as denoting the velocity of f at time t, and f ′′(t) as denoting the acceleration
of f at time t.
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5.2 Tools

1. Differentiation is linear: For f , g a pair of functions differentiable at a and α, β a
pair of constants,

(αf(x) + βg(x))′
∣∣∣
a

= αf ′(a) + βg′(a).

2. Product rule: For f , g a pair of functions differentiable at a,

(f(x) · g(x))′
∣∣∣
a

= f ′(a) · g(a) + g′(a) · f(a).

3. Quotient rule: For f , g a pair of functions differentiable at a, g(a) 6= 0, we have(
f(x)

g(x)

)′ ∣∣∣∣∣
a

=
f ′(a) · g(a)− g′(a) · f(a)

(g(a))2

4. Chain rule: For f a function differentiable at g(a) and g a function differentiable at
a,

(f(g(x)))′
∣∣∣
a

= f ′(g(a)) · g′(a).
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