Math & Instructor: Padraic Bartlett

Limits and Continuity
Week 4 Caltech 2012

1 Continuity: Definitions
Definition. If f: X — Y is a function between two subsets X,Y of R, we say that

lim f(z) =L

r—a
if and only if
1. (vague:) as x approaches a, f(x) approaches L.

2. (precise; wordy:) for any distance € > 0, there is some neighborhood ¢ > 0 of a such
that whenever x € X is within 0 of a, f(z) is within € of L.

3. (precise; symbols:)

Ve > 0,30 >0s.t. Ve e X,(|lz —a| <) = (|f(z) — L| <e).

Definition. A function f: X — Y is said to be continuous at some point a € X iff

lim f(z) = f(a).

r—a

Somewhat strange definitions, right? At least, the two “rigorous” definitions are some-
what strange: how do these epsilons and deltas connect with the rather simple concept of

“as x approaches a, f(x) approaches f(a)”? To see this a bit better, consider the following
image:
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This graph shows pictorially what’s going on in our “rigorous” definition of limits and
continuity: essentially, to rigorously say that “as x approaches a, f(z) approaches f(a)”,
we are saying that



e for any distance € around f(a) that we’d like to keep our function,
e there is a neighborhood (a — J,a + ) around a such that

e if f takes only values within this neighborhood (a —d,a+9¢) , it stays within € of f(a).
Basically, what this definition says is that if you pick values of x sufficiently close to a, the

resulting f(x)’s will be as close as you want to be to f(a) — i.e. that “as x approaches a,

f(x) approaches f(a).”

This, hopefully, illustrates what our definition is trying to capture — a concrete notion
of something like convergence for functions, instead of sequences. So: how can we prove
that a function f has some given limit L? Motivated by this analogy to sequences, we have
the following blueprint for a proof-from-the-definitions that lim,_,, f(z) = L:

1. First, examine the quantity
|f(x) — L|.
Using algebra/cleverness, try to find a simple upper bound for this quantity of the
form
(things bounded when z is near a) - (function based on|z — al).

Some sample candidates: things like |x—al-(constants), or |z—a|?-(bounded functions like sin(z)).

2. Take your bounded part, and bound it! In other words, find a constant bound C' > 0
and a value §; > 0 such that whenever z is within §; of a, we have

(bounded things) < C.

3. Take your function based on |z — a| and your constant C' from the above step, and
starting from the equation

€

57

solve for | — a] in terms of € and C, by performing only reversible steps. This then

gives you some equation of the form

(function based on |z — a|) <

|z — a| < (thing in terms of C,¢€’s).
Define d5 to be this “thing in terms of C, €’s.”

4. Let 0 = min(dy,d2). Then, whenever |z — a| < §, we have just proven that we satisfy
both the equations

(bounded things) < C, and

(function in |z — a|) < <

C

If we combine these observations with the simple bound we derived in our first step,
we’ve proven that whenever |z — a| < 0, we have

|f(z) — L| < (bounded things)(|z — a| things) < C - é = €.

But this is exactly what we wanted to prove — this is the € — § definiton of a limit! So
we are done.

The following example ought to illustrate what we’re talking about here:



2 Continuity: An Example

Claim 1. The function x% is continuous at every point a # 0.

Proof. We want to prove that lim,_., 9%2 = a—lg, for any a # 0.
We proceed according to our blueprint:
1. First, we examine the quantity ’m% — a%{
1 I a? x?
22 a?|  |a22?  a2a2?
B a? — 22
| a2a?
(e —=)(a+x)
a2x?
(a+x)
=l|a—x|-
| R
(a+ )
=|r—al-
| I

By algebraic simplification, we’ve broken our expression into two parts: one of which
is |x — a|, and the other of which is bounded near z = a.

For values of x rather close to a, because a # 0, we can bound this as follows: pick x
such that z is within a/2 of a. Then we have

(a+x) (a+ (3a/2))

a?x? a?x?
< (a+ (3a/2))
- a2 (a/2)?

)

which is some nicely bounded constant. So, when we pick our ¢, if we just make sure
that 6 < a/2, we know that we have this quite simple and excellent upper bound

(a+x)
a?z?

10
ad|’

. So: we have bounded the bounded part by };—2| Now, we want to take the remaining
|x — a| part, which is exactly |z — al, and solve the equation

CL36

~ 10

€
10/a?

for |x — al, given any arbitrary € > 0. Conveniently, this is already done! In fact, if
we’re using our blueprint and we can make our “function in terms of | —a|” precisely



a36

|z—al, this is always this easy. Therefore, if we set do = then whenever |x—a| < J2,

10
we have

| < € ade

T—al < ——=—.
10/a3 ~ 10

3. Now, set § = min(dy, d2). Then, whenever |x — a| < J, we have
(a+x) 10 a’e
f@) -~ Ll <o —a |UFD) B 0

which is precisely what we needed to show to satisfy the € — ¢ definition of a limit.

Therefore, we have proven that lim,_, %2 = a% for any a # 0, as claimed.

O

3 Continuity: Three Useful Tools

Limits and continuity are wonderfully useful concepts, but working with them straight
from the definitions — as we saw above — can be somewhat ponderous. As a result, we have
developed a number of useful tools and theorems to allow us to prove that certain limits
exist without going through the definition every time: we present three such tools, and
examples for each, here.

Theorem. (Squeeze theorem:) If f, g, h are functions defined on some interval I'\ {a}' such
that

f(x) < g(z) < h(z), Ve € I\ {a},
lim f(z) = iim h(z),

—a
then lim,_,, g(x) exists, and is equal to the other two limits lim,_,, f(z), limg_q A(z).
Examples.

lim 2% sin(1/z) = 0.
z—0

Proof. So: for all z € R,z # 0, we have that
—1<sin(l/z) <1
= —2? < 2?sin(1/x) < 2%

thus, by the squeeze theorem, as the limit as  — 0 of both —z? and z? is 0,

lim 2% sin(1/z) = 0
z—0

as well. ]

'The set X \ Y is simply the set formed by taking all of the elements in X that are not elements in Y.
The symbol \, in this context, is called “set-minus”, and denotes the idea of “taking away” one set from
another.




Theorem. (Limits and arithmetic): if f, g are a pair of functions such that lim,_,, f(x),
lim,_,4 g(z) both exist, then we have the following equalities:

tim (af (x) + Bg(2)) = o (Jim (2)) + 5 (Jim g() )

lim (f(2) - g()) = (lim f(x)) - (lim g(a))
t (7)) = (i 70)/ (i) i vy 20

Corollary 2. Every polynomial is continuous everywhere.

Proof. To start, we know that the functions f(z) = x and f(z) = 1 are trivially continuous.
By multiplying these functions together and scaling by constant factors, we can create any
polynomial; thus, by the above theorem, we know that any polynomial must be continuous,
as we can create it from continuous things through arithmetical operations. L]

Theorem. (Limits and composition): if f : Y — Z is a function such that lim,_,, f(z) = L,
and g : X — Y is a function such that lim, ., g(x) = a, then

lim f(g(2)) = L.
r—b
Specifically, if both functions are continuous, their composition is continuous.

Examples.

lim sin(1/2?) = sin(1/a?),

Tr—a

if a # 0.

Proof. By our work earlier in this lecture, 1/2? is continuous at any value of a # 0, and
from class sin(z) is continuous everywhere: thus, we have that their composition, sin(1/a?),
is continuous wherever z # 0. Thus,

lim sin(1/2%) = sin(1/a?),

r—a

as claimed. 0

4 Discontinuity Proofs: A Lemma and a Blueprint

How do we show a function is discontinuous? Specifically: in our last class, we described
a “blueprint” for showing that a given function was continuous at a point. Can we do the
same for the concept of discontinuity?

As it turns out, we can! Specifically, we have the following remarkably useful lemma,
proved in Dr. Ramakrishnan’s class:

Lemma 3. For any function f: X — Y, we know that lim,_,, f(x) # L iff there is some
sequence {an}o>; with the following properties:

e lim, .o a, =L, and



o lim, . f(an) # L, and

This lemma makes proving that a function f is discontinuous at some point a remarkably
easy: all we have to do is find a sequence {a,}72; that converges to a on which the values
f(ay) fail to converge to f(a). Basically, it allows us to work in the world of sequences
instead of that of continuity; a change that makes a lot of our calculations easier to make.

The following example should help illustrate our method:

Claim 4. The function sin(1/x) has no defined limit at 0.

Proof. So: before we start, consider the graph of sin(1/z):

SN M
V] '

Visual inspection of this graph makes it clear that sin(1/z) cannot have a limit as z
approaches 0; but let’s rigorously prove this using our lemma, so we have an idea of how to
do this in general.

So: we know that sin (4’“2—“77) = 1, for any k. Consequently, because the sequence

2 o
{7}k satisfies the properties
=1

(@k+ )7

® hmk_)oo m =0 and

o limy_,o, sin (m) = im0 sin (4517) = limy 0o 1 = 1,
our lemma says that if sin(1/x) has a limit at 0, it must be 1.

However: we also know that sin (4]“74'371') = —1, for any k. Consequently, because the
2

oo
sequence {m}kzl satisfies the properties

o limy o m =0 and

o limy_,o, sin (m) = im0 sin (458 7) = Timy 0o —1 = —1,
our lemma also says that if sin(1/z) has a limit at 0, it must be —1. Thus, because —1 # 1,
we have that the limit lim,_,¢sin(1/z) cannot exist, as claimed.

O



5 One-Sided Limits

Let’s conclude with something fairly elementary: the concept of a one-sided limit.

Definition. For a function f: X — Y, we say that

lim f(x)=1L

x—rat
if and only if
1. (vague:) as x goes to a from the right-hand-side, f(z) goes to L.

2. (concrete, symbols:)

Ve > 0,36 >0s.t. Ve e X,(|lz —a| <dand z > a) = (|f(x) — L| <e).

Similarly, we say that

lim f(z)=1L

r—a—
if and only if
1. (vague:) as x goes to a from the left-hand-side, f(z) goes to L.

2. (concrete, symbols:)

Ve> 0,36 >0s.t. Ve e X,(|z —a| <dand z < a) = (|f(x) — L| <e).

Basically, this is just our original definition of a limit except we’re only looking at
z-values on one side of the limit point a: hence the name “one-sided limit.” Thus, our
methods for calculating these limits are pretty much identical to the methods we introduced
on Monday: we work one example below, just to reinforce what we’re doing here.

Claim 5.
x
lim u =1.
z—=0t T
Proof. First, examine the quantity
||
x
For x > 0, we have that
x
ol
x

therefore, for any e > 0, it doesn’t even matter what § we pick! — because for any x with
0 < x, we have that

m - ‘ =0<e.
x
Thus, the limit as %l approaches 0 from the right hand side is 1, as claimed. L]

One-sided limits are particularly useful when we're discussing limits at infinity, as we
describe in the next section:



6 Limits at Infinity

Definition. For a function f: X — Y, we say that

lim f(x)=1L

r—r+00
if and only if
1. (vague:) as x goes to “infinity,” f(z) goes to L.

2. (concrete, symbols:)

Ve > 0,3IN st. Ve e X, (x > N) = (|f(z) — L| <e).

Similarly, we say that

lim f(z)=1L

T—>—00
if and only if
1. (vague:) as x goes to “negative infinity,” f(x) goes to L.

2. (concrete, symbols:)

Ve > 0,3IN s.t. Vo € X, (x < N) = (|f(z) — L| <e).

In class, we described a rather useful trick for calculating limits at infinity:

Proposition. For any function f: X — Y,

r——+00 x—0t x

lim f(z) = lim f<1>.

Similarly,

lim f(z)= lim f (1)
z——00 =0~ x
The use of this theorem is that it translates limits at infinity (which can be somewhat
complex to examine) into limits at 0, which can be in some sense a lot easier to deal with:
as opposed to worrying about what a function does at extremely large values, we can just
consider what a different function does at rather small values (which can make our lives
often a lot easier.)
Here’s an example, to illustrate where this comes in handy:

Claim 6.

. 322+ cos(34x) +107 -2 3
lim =—.
z—+o00 222 +1 2




Proof. Motivated by our proposition above, let us subsitute 1/x for z, so that we have

. 322 +cos(34x) + 107 - x . 3(1/)% 4 cos(34/x) + 107 - (1/x)
lim = lim .
z—+00 222 + 1 z—0+ 2(1/z)2+1

Multiplying both top and bottom by 2, this limit is equal to

. 3+ax%cos(34/z) + 107 - x
lim .
0+ 2+ 2

Because limits play nicely with arithmetic, we know that the limit of this ratio is the ratio
of the two limits 3 + 2% cos(34/z) + 107 - z and 2 + 22, if and only iff both limits exist.
But that’s simple to see: because 2 + 22 is a polynomial, it’s continuous, and thus

lim 2422 =2+0%=2.

z—0t

As well, because
3—224+1-T2<3+2%cos(34/2) +107 -2 <3422 +1-" 2,
and both of those polynomials converge to 3 as x — 0, the squeeze theorem tells us that

lim 34 2?cos(34/x) + 107 -z =3

z—07F

as well.
Thus, because both limits exist, we have that
lim 3+ z%cos(34/x) +107 - x _ lim, o+ (3 + 2% cos(34/x) + 107 - z) _3
z—0+ 2+ 22 lim, o+ (2 + 22) 2’

as claimed. 0

One useful application of limits at infinity comes through studying the intermediate
value theorem, which is the subject of our next section:

7 The Intermediate Value Theorem

Theorem. If f is a continuous function on [a, b], then f takes on every value between f(a)
and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes on both
positive and negative values on some interval; in this case, the intermediate value theorem
tells us that this function must have a zero between each pair of sign changes. Basically,
when you have a question that’s asking you to find zeroes of a function, or to show that a
function with prescribed endpoint behavior takes on some other values, the IVT is the way
to go.

To illustrate this, consider the following example:

Claim 7. If p(z) is an odd-degree polynomial, it has a root in R — i.e. there is some x € R
such that p(x) = 0.



Proof. Write
p(z) =ap+ a1z + ...+ apa”,

where n is an odd natural number and a,, > 0. (The case where a,, < 0 is identical to the
proof we’re about to do if you flip all of the inequalities, so we omit it here by symmetry.)
Then, notice that
. ag+ ...+ apx™ .
lim = lim (

T—+00 xn T——+00

= lim (@)—I— lim (:il)—&—...—i— lim (ay)

) al Gn—1
— +...+

ban)

L l.nfl

z—+oo \ g™ r—+o00 \ I r—+00
=0+...+404+a,
= Qn,

(where the second line is justified because all of the individual limits exist.)

As a result, we know that for large positive values of z, %@t=tant® i a5 close to a, as
we would like. Specifically, we know that for large values of x, we have that the distance
between %@t=tanz® 414 ¢, is less than, say, an/2. As a consequence, we have specifically
that W is positive, for large positive values of  — thus, for some large positive x,
we have that

n @0+ ...+apx”

S e = (positive) - (positive) = (positive).

Similarly, because

n
l 0T RO g (204 Mg g,
T——00 " z——oco \gn = gn—l T
. (a0 : ay :
=04...40+a,
= Qn,

n o, 3
a0t +an” s a5 close to a, as we'd like,

we also have that for large negative values of x,
and thus that “O+x+"xn is positive, for large negative values of . Thus, for some large

negative value of x, we have that

n @0+ ...+ apx®
x .
xn

= (negative) - (positive) = (negative).

(Notice that the fact that n was odd was used in the above calculation, to insure that z
negative implies that ™ is negative.)

We have thus shown that our polynomial adopts at least one positive and one negative
value: thus, by the intermediate value theorem, it must be 0 somewhere between these two
values! Thus, our polynomial has a root, as claimed. L]

10



8 Open, Closed, and Bounded Sets

Finally, we make something of a detour here, to quickly define open, closed, and bounded
sets:

Definition. A set X C R is called open if for any z € X, there is some neighborhood §,
of x such that the entire interval (z — d,, x + d,) lies in X.

Examples.

e The sets R and () are both trivially open sets.
e Any open interval (a,b) is an open set.
e The union? of arbitrarily many open sets is open.

e The intersection ? of finitely many open sets is open.
Definition. A set X C R is called closed if its complement® is open.
Examples.

e The sets R and () are both trivially closed sets. Note that this means that some sets
can be both open and closed!

e Any closed interval [a,b] is an closed set.
e The intersection of arbitarily many closed sets is closed.

e The union of finitely many closed sets is closed.

Definition. A set X C R is bounded iff there is some value M € R such that —M <z < M,
for any z € X.

We will work more closely with these definitions in future lectures: however, for now,
it suffices to note the following useful theorem, which we’ll use heavily in our discussion of
the derivative:

Theorem. (Extremal value theorem:) If f : X — Y is a continuous function, and X is a
closed and bounded subset X of R, then f attains its minima and maxima. In other words,
there are values m, M € X such that for any z € X, f(m) < f(x) < f(M).

2The union X UY of two sets X,Y is the set {a:a € X or a € Y, or both.}
3The intersection X NY of two sets X,Y is the set {a:a € X and a € Y.}
“The complement X¢ of a set X is the set {a:a ¢ X}

11
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