
Generating Functions Instructor: Paddy

Lecture 4: Sieves

Week 1 of 1 Mathcamp 2010

In previous lectures, we would often illustrate a generating-function method by opening
with an example, and then discussing how it can generalize. This is often a productive
way to build intuition; however, sometimes it’s clearer to begin in full generality and then
illustrate what we’re doing by actually tackling a problem or two. Today is such a day!

Specifically, the motivating question for today’s lecture on the sieve method is the fol-
lowing:

Question 1 Consider the following objects:

• Ω, some finite set of objects,

• P , some collection of properties that the elements of Ω may or may not have, and

• f : Ω → P(P ), a function that sends any x ∈ Ω to the subset of P corresponding to
the properties it has.

For a given r, how many objects in Ω have precisely r properties? What is the average
number of properties posessed by a given element?

If the above notation is confusing, consider the following very basic example:

Example. Let

• Ω = {1, 2, 3, 4},

• P = {odd, prime}, and

• f(1) = {odd}, f(2) = {prime}, f(3) = {odd, prime}, and f(4) = ∅.

. In this situation, our above question is trivial to answer: there is one element with no
properties, two with one property, one with two properties, and the average number of
properties possessed is 1.

So: for many quantities, it can be much easier to count how many objects have at least r
properties rather than counting how many objects have precisely r properties. To illustrate
this point, consider the following example:

Example. (Stirling numbers of the second kind) For fixed n, k, let

• Ω = the collection of all kn ways of putting n labeled balls into k labeled boxes, and

• P = {P1, . . . Pk}, where Pi is the property that the i-th box is empty.
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From this definition, we have that the number of elements that don’t satisfy any properties
is just

k!

{
n
k

}
,

as failing to satisfy any of the Pi means that we’ve put a ball into every box (i.e. created
a nontrivial partition of {1, . . . , n}, and the k! comes from us now caring about how the
boxes are labeled.

This, as we saw on class Tuesday, is nontrivial to find! However, for a fixed S ⊂ P , the
number of elements of Ω that satisfy at least S is just (k−|S|)n, which is completely trivial!

How can we use this to our advantage? In other words, how can we turn knowledge
about the amount of objects possessing at least r properties into knowledge about objects
possessing exactly r properties? Generating functions!

Specifically, for some fixed Ω, P, f , we do the following: Let N(S) be the number of
elements in Ω that satisfy all of the properties in S, and let

Nr =
∑

S⊂P :|S|=r

N(S).

Then, we have that

Nr =
∑

S⊂P :|S|=r

N(S)

=
∑

S⊂P :|S|=r

 ∑
x∈Ω:S⊂f(x)

1


=
∑
x∈Ω

 ∑
S⊂P :|S|=r,S⊂f(x)

1


=
∑
x∈Ω

(
|f(x)|

r

)

This implies that every object with exactly t properties contributes
(
t
r

)
to Nr. So, if we

let et denote the coll. of objects with exactly t properties, we have that

Nr =

∞∑
t=0

(
t

r

)
et

.

So: let N(x) be the generating function for the Nr’s, and E(x) be the generating function
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for the et’s. Then, we have the following (stunning!) identity:

N(x) =

∞∑
r=0

Nrx
r

=
∞∑
r=0

( ∞∑
t=0

(
t

r

)
etx

r

)

=

∞∑
t=0

et ·

( ∞∑
r=0

(
t

r

)
xr

)

=
∞∑
t=0

et(1 + x)t

= E(x + 1).

So: via the toolset given to us by generating functions, we can convert back and forth
between “exact” counting and “at-least” counting with absolutely no effort!

Specifically, this method – the method of “sieves” – gives us the following pair of re-
markably useful answers to our earlier questions:

1. Because E(x) = N(x− 1), we have that et is just the coefficient of xt in N(x− 1); i.e

et = [xt]
∞∑
r=0

Nr(x− 1)r

=

∞∑
r=0

Nr · [xt](x− 1)r

=
∞∑
r=0

(−1)r−t
(
r

t

)
Nr.

So we can switch from the et’s and Nr’s with no difficulty whatsoever.

2. By our earlier work,

Nr =
∞∑
t=0

(
t

r

)
et

⇒ N1 =

∞∑
t=0

t · et

⇒ N1

Ω
= the average number of properties possessed by an elt. of Ω.

So: to illustrate the power of what we’ve just done, we do an example below:

Example. Of the n! permutations of {1, . . . , n}, how many have no fixed points1?
What is the expected number of fixed points for a random permutation?

1We say that k is a fixed point of a permutation π iff π(k) = k
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Solution. So: in our language of sets and properties, let

• Ω = the collection of all n! permutations, and

• P = {P1, . . . Pn}, where Pi is the property that i is a fixed point.

Then, for any S ⊂ P , the number of permutations satsfying S, N(S), is just the
number of permutations on points not fixed by S: i.e. (n− |S|)!.
Consequently, we have that

Nr =
∑
|S|=r

N(S) =
∑
|S|=r

(n− |S|)! =

(
n

r

)
(n− r)! =

n!

r!
,

if r ≤ n, and 0 otherwise. Thus, we have

N(x) =
n∑

r=0

n!

r!
xr = n! ·

n∑
r=0

xr

r!

⇒ E(x) = N(x− 1) = n! ·
n∑

r=0

(x− 1)r

r!

⇒ e0 = E(0) = N(−1) = n! ·
n∑

r=0

(−1)r

r!

⇒ e0 ≈
n!

e
.

So, the expected number of fixed points is just N1/n! = n!/n! = 1, and the number
of permutations with no fixed points is approximately n!

e .
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