Graph Colorings
 Instructors: Marisa and Paddy
 Homework 2: The Chromatic Polynomial

Week 2
Mathcamp 2010

1. Prove that $P\left(C_{n} ; t\right)=(t-1)^{n}+(-1)^{n} \cdot(t-1)$, where C_{n} is the cycle graph on n vertices ${ }^{1}$
2. For a graph G with $E(G) \neq \emptyset$, prove that the sum of the coefficients of the chromatic polynomial of G is 0 .
3. Prove that the coefficient on t^{n-1} in the chromatic polynomial of G is the number of edges in G.
4. The ladder graph L_{n} on $2 n$ vertices is the graph formed by connecting two paths of length n as depicted below:

Find the chromatic polynomial of L_{n} for as many n as you can (ideally, find a general formula for all n.)
5. The windmill graph $W d(k, n)$ on $n(k-1)+1$ vertices is the graph formed by taking n copies of K_{k} and joining them all together at a common vertex, as shown below:

Show that the chromatic polynomial of $W d(n, k)$ is

$$
\prod_{i=0}^{k-1}(x-i)^{n}
$$

[^0]
[^0]: ${ }^{1}$ Hint: First, consider the case where $n=3$ and compute $P\left(C_{3} ; x\right)$. (Maybe compute $P\left(C_{4} ; x\right)$, too, if you want practice.) Then proceed by induction; you will need the deletion/contraction theorem and the chromatic polynomial of a tree.

