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1 Glossary

Surface A surface is just a collection of points that “locally” looks like R2; explicitly, a
surface is a shape that you can get by gluing pairs of edges on a regular 2n-polygon
together.

Metric A metric, loosely speaking, is a function that defines the concept of distance on a
space.

Embedding An embedding of a graph G on a surface S is a way of drawing G on S, so
that all of the vertices of G are points on S and the edges of G are curves drawn on
S.

Planar embedding A planar embedding is an embedding in which the curves for any two
edges never intersect (except at possibly their endpoints.)

Nice n-coloring Take a surface with metric (S, d) and a graph G planarly embedded on
S. A nice n-coloring is a way of painting the faces of G with n colors, so that no two
faces within distance 1 of each other get the same color.

Simple closed curve A continuous map γ : [0, 1]→ S such that γ(0) = γ(1) and for any
other pair of points t, s ∈ (0, 1), γ(t) 6= γ(s).

Contractible A simple closed curve γ is called contractible if it bounds a region in S that
“looks like” an open disk. Rigorously: γ is contractible iff there is a continuous map
F : [0, 1]2 → S such that F (s, 0) = F (s, 1) = γ(0), F (0, t) = γ(t), F (1, t) is the
constant function γ(1), and F (s, t) never intersects γ whenever s 6= 0 and t 6= 0, 1.

Interior The interior of a contractible simple closed curve γ is the region that γ bounds
that looks like an open disk: in other words, it’s the region of S where F (s, t)’s values
live.

Area For a subset A of our surface with metric (S, d), area(A) is defined to be the maximal
number of pairwise disjoint open discs of radius 1/2 that we can completely fit in A.
(This is not a completely standard definition, but it is useful here.)

Dn(x) For a graph G and vertex x ∈ V (G), the set Dn(x) consists of all of the elements
v ∈ G that are distance n from x: i.e. all vertices that have a walk of length n to x,
but no walks of shorter length to x.

Locally finite A graph G is called locally finite if D1(x) is finite, for every x ∈ G.
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Locally Hamiltonian A graph is called locally Hamiltonian if for every x ∈ G, there is a
cycle in G made out of the vertices of D1(x).

2 Thomassen’s 7CT

So: recall how we tiled the plane with hexagons to show that χ(R2) ≤ 7:

A natural question to ask, after seeing this coloring, is the following: can we do any
better? In other words, suppose that we consider coloring the faces of some planar graph G
on R2, and we concern ourselves with not just avoiding monochromatic edges of length 1,
but making sure that no two faces that lie within distance 1 of each other receive the same
color. Can we come up with a 6-coloring?

The answer (perhaps surprisingly) is no! In fact, suppose that we don’t concern ourselves
with just the plane, but in fact with any surface S with a metric d. Then, we have the
following property:

Theorem 1 Suppose that S is a surface and k is a natural number with the following
properties:

1. Every noncontractible simple closed curve has diameter ≥ 2.

2. Every simple closed curve C with diameter < 2 is such that the area of int(C) is ≤ k.

3. The diameter of S is ≥ 12k + 30.

Take any graph G that can be planarly embedded on S. Then we need at least 7 colors to
nicely color the faces of G.

Proof. We first open with a remarkably useful lemma:

Lemma 2 If G is a connected, locally finite, locally Hamiltonian graph with at least 13
vertices, then G has a vertex of degree at least 6.

Proof. Suppose not: that all of the vertices of G have degree ≤ 5. Then, we have one of
the following five cases (follow along with pen and paper!):
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• ∆(G) = 1. In this case, G consists of pairs of edges and isolated vertices, and is clearly
not connected; a contradiction.

• ∆(G) = 2. In this case, because G is connected, it must be C13; consequently, G is
not locally Hamiltonian (as the neighbors of any two vertices aren’t connected.)

• ∆(G) = 3. Pick x such that deg(x) = 3, and look at D1(x), x’s neighbors. Because G
is locally Hamiltonian, these are all connected in a cycle; hence, we have that x∪D1(x)
is a tetrahedron, and thus disconnected from the rest of G.

• ∆(G) = 4. Pick x such that deg(x) = 4, and again look at D1(x). Because G is still
locally Hamiltonian, we have that D1(x) is connected in a cycle, and thus that each
vertex in D1(x) can be connected to at most one vertex in D2(x). Because we have
more than 5 vertices in G, at least one vertex y ∈ D1(x) is connected to some vertex
z ∈ D2(x). Then, because D1(y) *also* has to form a cycle, we have that there are
edges from z to both of y’s neighbors in D1(x); consequently, no other vertices than
z can live in D2(x). But this means that for D1(z) to contain a cycle, we need to
have z connected to all four elements in D1(x); so all of the vertices of G have degree
4, and thus no more vertices can be added! But this graph has only 6 vertices; a
contradiction.

• ∆(G) = 5. Again, pick x such that deg(x) = 5. Because of the edges used in our
locally Hamiltonian condition, each element of D1(x) has no more than two neighbors
in D2(x). As well, each element in D2(x) has at least two neighbors in D1(x) and two
more in D2(x), again because of the locally Hamiltonian condition; so each element
in D2(x) can be connected to at most 1 element in D3(x). Suppose that there is some
element in D3(x), and call it z; then, again by the locally-Hamiltonian property, z
has at least three neighbors in D2(x).

So: because there are at most 5 vertices in D1(x), there are likewise at most 5 vertices
in D2(x) by degree considerations; thus, before we start looking at edges to D3(x),
we know that there are already 4 edges tied up for every vertex in D2(x). So, there
are at most 5 edges spare from D2(x) to D3(x); as every vertex uses at least 3 edges,
this means that D3(x) has at most 1 vertex. Using our locally-Hamiltonian property
for the last time, we have at last that D4(x) must be empty, and thus that G can
have at most |D0(x)| + |D1(x)| + |D2(x)| + |D3(x)| = 1 + 5 + 5 + 1 = 12 vertices, a
contradiction.

(It bears noting that the above logic also shows that the icosahedron is the unique connected
locally finite, locally Hamiltonian graph that’s 5-regular.)

So: why did we prove this lemma?
Well: let’s proceed by contradiction. Assume we have a pair (G,S) that satisfies our

conditions and admits a nice 6-coloring. Consider the dual graph M(G,S) (sometimes called
the map graph) to our graph G, formed by taking G’s faces as our vertices and connecting
two such vertices iff their faces intersect in G.

Take any vertex x in M , and let Cx be the cycle of edges in G that bounds the face
marked by x. Fix some orientation of Cx, and let x1, . . . xn be the list of faces in G that we
visit when going around Cx.
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Suppose for a moment that all of these vertices were distinct, for every x. Then we
would have that the neighbors of x, x1 . . . xn, form a cycle in M for every x – i.e. that M
is locally Hamiltonian! Thus, by our lemma, we would have that M must contain a vertex
v of degree at least 6.

Examine the face corresponding to v in G. It must have diameter < 1, if we’re in a
nice coloring; as well, it needs to have at least six neighboring faces. Consequently, because
we’ve given G a nice coloring, v’s face and all of its neighboring faces must be different
colors – i.e. we need at least 7 colors to nicely color G!

The rub, then, lies in the fact that it’s entirely possible for a vertex to be repeated in
Cx, as we show below:

So: what do we do? Let’s start by considering some such “bad” case: i.e. let x, y be
vertices such that y shows up in two nonconsecutive entries of Cx. Let ei and ej be two such
nonadjacent edges, and let R be a simple closed curve in the faces bounded by Cx and Cy,
that crosses each of ei, ej precisely once and crosses no other edges. Because the diameter
of any face is < 1, the diameter of R is < 2 and thus R is contractible.

Consequently, by the Jordan curve theorem, R divides M into two pieces: the interior
of R and the exterior of R. As a result, we have that that M − {x, y} is disconnected!

How many vertices live inside of R? Well: for every i-colored vertex z in M that lies
in int(R), pick some point sz ∈ S from inside of the face labeled by z. Because the area
contained by R is ≤ k, there are at most k such vertices; finally, because we’re assuming
that we have a nice 6-coloring, we have at most 6 such collections of colored vertices.
Consequently, int(R) contains at most 6k vertices.

So: look at the connected components of the graph M − {x, y}. Each one that corre-
sponds to the interior of some R has ≤ 6k vertices, as we’ve just shown: how about the
rest? Well, first notice the following pair of observations:

• There is a component of M − {x, y} that is *not* the interior of some R. This is
because the diameter of any such R is ≤ 2, and each such R starts somewhere in the
face given by x; consequently, because the diameter of our space is ≥ 12k + 30, we
must have some faces not contained within a R.

• This component is in fact unique! To see this, let e1, . . . en list the edges in order
around Cx, and f1, . . . fm list the edges in Cx ∩ Cy in the order that they appear in
when going around Cx. Each pair of these edges f2, f1+1 define a curve R like the
one we’ve considered above. Thus, for each such curve Ri,i+1 through fi and fi+1,
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we have that R contains all of the faces between some e′i and some e′j in either the
clockwise or counter-clockwise orientation, depending on how R goes around x.

So: what would happen if there were two nonadjacent edges ei, ej in Cx such that
a loop R never goes around them? Well, because y is a single continuous face, we
know that there couldn’t be a xy-loop on at least one side of the ei, ej ’s: so the faces
corresponding to ei and ej are connected. So there’s exactly 1 connected component
that’s not in the interior of some R.

So: call such a pair {x, y} a 2-separator, and denote the collection of all of the interior
components of loops R constructed above by writing int(M,x, y). Take the collection of all
such pairs {x, y} where M − {x, y} is disconnected. Discard any pairs {x, y} where either
x or y lie strictly within int(M,u, v) for some other pair {u, v}. Call this collection of pairs
we now have a collection of maximal 2-separators, and call the edge xy of any maximal
2-separator a crucial edge.

Consider the subgraph H formed in G by deleting int(M,x, y) for every maximal 2-
separator {x, y}. H is connected, as the shortest path between any two elements in H will
never go through int(M,x, y) (as it’s always faster to go through the edge xy than anything
in the interior.) As well, because M has diameter > 12k+ 30, we know that there must be
at least 7 vertices in H (as the diameter of any int(M,x, y) is always bounded by 4, as it’s
constrained by the diameters of the loops R in x, y.)

So: we claim that this graph H is locally Hamiltonian! To see this: take any vertex
x ∈ H, and look at its neighbors x1, x2, . . . xk. If these are all distinct, we’re done! So
suppose not; that xi = xj , for i 6= j, j±1. Then the pair {x, xj} is a 2-separator; because it’s
still in our graph, it’s a maximal 2-separator, and thus we removed the interior int(M,x, xj)
from our graph. Thus, we know in fact that all of the vertices between xi and xj are the
same and equal to xj ! So in fact we have that this is a cycle.

So: by the lemma, because this is a connected locally finite, locally Hamiltonian graph,
either it has a vertex of degree 6 (in which case we’re done, as before) or every vertex is of
degree ≤ 5 and there are no more than 12 vertices. Consequently, we have no more than
30 edges in our graph H.

So: how do we turn H back into M? Well: all we have to do is simply “glue” the
interiors of int(M,x, y) back in along the crucial edges {x, y}.

We claim that doing this increases the diameter of H to < 12k+30. Why? In the worst-
case scenario, we attached two int(M,x, y)′s to vertices that are on completely opposite
sides of H, which has diameter < 30. Each of int(M,x, y)’s components have < 6k vertices;
consequently, in the worst-case scenario we have a path in our graph from a vertex in one
component to a vertex in another component of length 12k + 30, which forces our surface
to have strictly smaller diameter (as the diameter of any face is < 1.)

Thus, we have that S has diameter < 12k + 29, a contradiction. So a vertex of degree
6 must exist! Consequently, no nice 6-coloring can exist, as claimed.
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