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Mathematicians like to use graphs to describe lots of different things. Groups, electrical
networks, airplane routes, and the internet itself are all objects which graphs are used to
model; consequently, mathematicians have came up with several different definitions for the
word “graph” itself! We state several of these definitions here:

1 The Basics

Definition. A simple graph G with n vertices and m edges consists of the following two
objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

Example. The following pair (V,E) defines a simple graph G on five vertices and five
edges:

• V = {1, 2, 3, 4, 5},

• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

Something mathematicians like to do to quickly represent graphs is draw them, which we
can do by taking each vertex and assigining it a point in the plane, and taking each edge
and drawing a curve between the two vertices represented by that edge. For example, one
way to draw our graph G is the following:

However, this is not the only way to draw our graph! Another equally valid drawing is
presented here:
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As mentioned before, there are other possible definitions of a graph:

Definition. A simple directed graph G with n vertices and m edges consists of the
following two objects:

1. a set V = {v1, . . . vn} of vertices, and

2. a set E = {e1, . . . em} of edges, where each edge ei is an ordered pair of distinct
elements in V , where no ordered pair is repeated.

The only difference between this definition and the definition for simple unordered graphs
is that all of our edges have an ordering – i.e. the edge (a, b) is different from the edge (b, a).

Example. The following pair (V,E) defines a simple directed graph G on four vertices and
six edges:

• V = {1, 2, 3, 4},

• E = {(1, 2), (2, 1), (3, 4), (4, 3), (1, 3), (4, 2)}.

We can draw such a graph in the exact same method as before, provided that we put little
arrows on our edges to indicate which direction they’re traveling:

As mentioned before, there are other possible definitions of a graph:

Definition. A multigraph graph G with n vertices and m edges consists of the following
two objects:

1. a set V = {v1, . . . vn} of vertices, and
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2. a set E = {e1, . . . em} of edges, where each edge ei is an ordered pair of elements in
V .

Note that in this definition we allow edges to be repeated, and furthermore that we allow
an edge to contain the same element twice.

Example. The following pair (V,E) defines a multigraph graph G on three vertices and
six edges:

• V = {1, 2, 3},

• E = {(1, 2)1, (1, 2)2, (1, 2)3, (2, 3)4, (2, 3)5, (3, 1)6}.

We can realize this graph as the following picture:

Typically, when a mathematician simply refers to a graph, they will mean a simple
graph. Throughout this course, we will usually work with simple graphs; if we want to refer
to any of the other concepts for graphs, we will explicitly say that we’re doing so.

2 Graphs as Models

Before we start delving into the theory, we first show some of the ways in which graphs can
model some remarkably interesting problems:

Example. (Maps.) Suppose we start with a map M consisting of several countries, and
we want to find a way of assigning each country a color so that no two countries sharing
a border are the same color. How many colors do we need to do this? Well, consider the
following simple graph we can make out of our map, where we set

• V = the collection of countries on our map, and

• E = {{a, b} : a and b are countries that share a border.}
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Then, our question is the following: given any graph that we can get from a map, how
many colors do we need to color its vertices so that no edge connects two vertices of the
same color?

The answer to this question is 4, and the problem itself is known as the Four-Color
Theorem – proven in 1976, it is one of the first problems in mathematics to have been
resolved with a computer. To this day, there are no non-computer-aided proofs known of
the four-color theorem.

Example. (Travel.) Suppose you’re a travelling salesman, going between cities in the
country to sell your product. Specifically, suppose you have a list of C cities that you have
to make it to, F a list of flights between these cities, and you’re starting in some city c ∈ C.
Is there some flight path you could take that would make it so you never had to visit any
city twice?

Well, this clearly depends on your lists C and F , and where you’re starting from. For
example, if your cities were {Tokyo, Detroit, Rio, Paris} and your flights were {{ Tokyo,
Detroit}, { Detroit, Rio}, {Rio, Paris }}, you could do this if you were starting in Tokyo or
Paris, but not if you started in Detroit or Rio.

A natural way to visualize this problem is with graph theory! Specifically, if we think
of C as the set of vertices and F as the set of edges, we can visualize such a travel map as
follows:

Phrased in this fashion, our question is the following: given a graph G, is there a path1

that visits every vertex exactly once?
Such a path is called a Hamiltonian path, and the question of whether such paths exist

on an arbitrary graph is NP -complete2.

1A path of length n is a sequence of alternating vertices and edges v0, e01, v1, e12, . . . vn from our graph
G, so that each edge ek,k+1 connects the vertex vk to the vertex vk+1. Intuitively, a path is just a way of
“walking around” on our graph for n steps.

2This means, roughly, that there is no “fast” way to find out whether such a path exists; basically, there
isn’t any way to find out if a graph has a Hamiltonian path that’s much faster than just trying out every
path and seeing if any of them work. Furthermore, if you *could* find a faster algorithm in general, the fact
that this problem is NP-complete would allow you to solve a ton of other really difficult problems (like how
to factor numbers into primes) quickly as well. See Wikipedia for a better description of what NP-complete
means.

4

http://en.wikipedia.org/wiki/NP-complete_problem


As you (hopefully) can see from these examples, graphs are remarkably fascinating
objects, and worthy of study in their own right! This is what we’ll be doing through this
entire week in this introductory course to graph theory (and in the later sequences on flows
and networks / spectral graph theory!) – illustrating some beautiful results in graph theory,
showcasing a collection of applications to other fields of mathematics, and touching on a
few open problems in mathematics along the way.

3 The Degree-Sum Formula

Graphs in general – as you may have noticed – can be remarkably hairy and complicated
things. As such, we might wonder whether we can say anything about a general graph at
all; in other words, if G is a graph, can we say anything that restricts G?

As it turns out, we can! Consider the following definition:

Definition. In a simple graph G, we say that a vertex v ∈ V (G) has degree k iff there
are exactly k edges in E(G) that involve v. For example, in the graph drawn below, every
vertex has degree 2:

One quick question we could ask: for what values of n can we make a graph with the
degrees of all vertices = 3?

Well: in order to have each vertex have three neighbors3, we need to have at least four
vertices (as each vertex needs three other vertices to send edges to.)

In the case where n = 4, we can make every vertex have degree 3, via the graph below:

3We say that the vertices v and w are neighbors iff there is an edge connecting v and w. We denote the
set of all neighbors of v as N(v).
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How about for k = 5? Try it for yourself, on the vertices below:

As you may have noticed, no matter what you try, you can’t get all of the degrees to
be three! As it turns out, this is completely impossible – there is no graph on 5 vertices for
which all of the vertices have degree 3!

In general, much more is true:

Theorem 1 (Degree-Sum Theorem:) For a graph G on n vertices, with m edges and vertex
set V = {v1, . . . vn},

n∑
i=1

deg(vi) = 2 ·m.

Proof. The sum on the left-hand side is adding up all of the degrees of vertices in our
graph. But the degree of each vertex vi is just the number of edges that involve vi; because
every edge uses precisely two vertices, every edge is counted exactly twice on the left-hand
side. Therefore, we have that this sum must be twice the number of edges.

Corollary 2 Every graph must have an even number of vertices of odd degree; in other
words, a graph cannot have an odd number of vertices of odd degree.

As a very specialized case of the above corollary, we’ve proven that that there is no
graph on five vertices where all vertices have degree three.
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