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Lecture 6: Snarks!
Week 1 of 1 Mathcamp 2011

1 Snarks!

Theorem 1 (Snark Theorem: 2001, Robertson, Sanders, Seymour, and Thomas) Every
snark contains the Petersen graph as a minor.

Corollary 2 The four-color theorem holds.

Without knowing what a snark even is, the above pair of results should hopefully mo-
tivate just why they’re such fascinating things to study — given the snark theorem, it’s
remarkably easy to prove the four-color theorem (indeed, it’s on your HW!) Today’s lecture
is going to be a brief introduction to just what snarks are: in the next hour, we will define
snarks, and go about the remarkably strange process of hunting them. ..

First, we make a series of definitions:

Definition. The line graph L(G) of a graph G is the graph with vertex set given by the
edges of G, and an edge {e, f} in G if and only if these two edges are incident in G. A
n-edge coloring of a graph G is a mapping from the set E(G) into the set {1,2,...n}
such that no two incident edges receive the same colors. The edge chromatic number of
a graph G, X'(G), is the smallest value of n such that G admits a n-edge coloring.

To give a feel for how these definitions work, we study a few quick examples:
Proposition 3 A cycle C,, has edge-chromatic number X'(G) = x(G).

Proof. Take a cycle C),, and consider its line graph L(C,,). This is another cycle! In fact,
it’s the same cycle as (G, as it has the same number of vertices; thus, its edge chromatic
number is the same as G.

Theorem 4 If G = (A, B) is a bipartite graph, then X' (G) = A(G).
Proof. On the HW!

With this out of the way, we can now define a snark!
Definition. A snark is a graph G with the following properties:

1. G is connected.

2. G is 3-regular: i.e. every vertex in G has degree 3.

3. G is bridgeless; i.e. if we remove any one edge from G, the resulting graph is still
connected.
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G has girth > 5: i.e. it has no subgraphs isomorphic to cycles of length < 4.
X(G) =z 4.

This might seem like a somewhat...odd definition. Why did we make it? Well: as it
turns out, the definition of a snark arose from an attempt to generalize the Petersengraph
to a family of graphs. We prove that the Petersen graph is indeed a snark here:

Proposition 5 The Petersen graph P is a snark.

Proof. We first note the following useful lemma:

Lemma 6 There is an automorphism of the Petersen graph that swaps the outer pentagon
and the inner star.

Proof. In this case, a picture is worth a thousand proofs:
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Given the above lemma, we now proceed to check the five properties required to be a
snark:

Connected: trivially true.
Bridgeless: also trivially true.
3-regular: again, trivially true, as every vertex has degree 3.

Girth 5: suppose not, that P has a cycle of length < 4. Such a cycle cannot live
entirely within the inner or outer 5-cycles of P; so it has to involve two of the “cross-
edges” (the edges connecting the outer pentagon and inner star) of P. Pick any two
such cross-edges; then, by our lemma, we can insist (by moving P around) that these
cross-edges involve two non-adjacent vertices on the outer cycle of P. But then we
have to use at least two more edges on the outer cycle to connect these two cross-edges!
So this cycle must have > 5 edges.

4-edge-colorable: to see this, again proceed by contradiction. Suppose not; that we
have a way of partitioning P’s edges into 3 color classes, R, G, and B in such a way
that within each color class, there are no two adjacent edges. Then each color class
can have no more than |V (P)|/2 = 10/2 = 5-many edges, as we can use each vertex
at most once in a given color class and each edge uses two vertices. But |E(P)| = 15 —
so each color class has exactly 5 edges! In other words, each color class is a 1—fact01E|!

We seek to show that this is impossible: i.e. that P cannot be decomposed into
1-factors. So: to do this, take any 1-factor and delete it from P. We then claim

LA 1-factor of a graph G is a subgraph made of disjoint edges that hits every vertex in G.



that the resulting 2-factor is isomorphic to a pair of disjoint pentagons, and thus
cannot be decomposed into 2 1-factors (as doing so would create a 2-edge-coloring of
a pentagon.)

First, observe that in any 2-factor, we always have an even number of cross-edges.
Why is this? Because 2-factors are made out of disjoint cycles: thus, if any cycle
leaves either the inside or outside along a cross-edge, it must return along another
cross-edge. So, three possibilities exist:
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— We use no cross-edges. In this case, we have two pentagons; specifically, the
inner and outer pentagons of P.

— We use 2 cross-edges. In this case, we can again insist (by our lemma) that the
cross-edges used are specifically the two depicted above. In this case, because
these two cross edges involve nonadjacent endpoints, they force us to include the
entire outer cycle of P in our 2-factor — but this creates vertices of degree 3! So
this is impossible.

— We use 4 cross-edges. In this case, the cycle edges forced into our 2-factor again
form 2 pentagons.

Snarks are a particular kind of graph that have been intensely studied since the 1880’s,
when Tait showed that proving the Snark Theorem would imply the four-color theorem:;
their (rather curious) name stems from the Lewis Carrol poem “The Hunting of the Snarkﬂ”
To this day, they remain a remarkably mysterious collection of graphs, about which modern
graph theory knows rather little — indeed, by 1973, graph theoreticians had only discovered
5 snarks in total! In this last part of this lecture, we’ll show how we can use a rather simple
operation to create an infinte family of snarks.

Specifically: consider the dot product, an operation we define here:

Definition. Given a pair of snarks G, H, we can form their dot product by manipulating
a pair of disjoint edges {u,v},{w,z} in G and adjacent vertices y, z in H as shown below:

2An exerpt from the poem:

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;

They threatened its life with a railway-share;

They charmed it with smiles and soap.
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Proposition 7 The dot product preserves snarkiness.

Proof. We first claim that the only interesting property to check is whether the dot product
of two snarks is a snark; if you’re not persuaded that this is true, check the other properties
yourself!

So: we first prove the following extremely handy lemma:

Lemma 8 Suppose that G is a 3-reqular graph that’s 3-edge-colorable. Let Z be a collection
of nonadjacent edges in G that satisfies the following property: if we delete the Z-edges from
our graph G, G is disconnected into two components A and B, such that each edge of Z
has one endpoint in A and one in B. Let n; be the number of edges in Z colored i, for
1 =1,2,3. Then the n; are all congruent modulo 2.

Proof. Let A and B be two parts of G that Z divides G into. Pick some color ¢;, and look
at the vertices of A. Because GG is cubic, every vertex a € A has an edge of every color
entering it; so there are two possibilities: either

e the c¢;-colored edge entering a is in Z, or

e the ¢;-colored edge entering a goes to some other vertex in A.

Consequently, we have that |A| is equal to n; plus some even number; as a result, all of the
n;’s are congruent to |A| (and thus to each other!) mod 2.

Revisit the dot product picture. Suppose, for contradiction, that this graph is 3-edge
colorable, and fix some 3-edge-coloring. By our above lemma, we know that all of the
colors involved in {e, f, g, h} have to be congruent mod 2; consequently, one color has to be
omitted! Thus, we can say without loss of generality that the four edges above possess one
of the following colorings:

e ¢, f,g,h are all colored 1;
e ¢, f are colored 1, g, h are colored 2;

e ¢, g are colored 1, f, h are colored 2.

In case 1, we can turn this into a 3-edge-coloring of G by coloring both u,v and w,x 1;
in case 2, we can color the five edges deleted when we removed y and z 1, 2,3 as depicted
below; and in case 3, we can just color u,v 1 and w,z 2. So we’re done!



