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Lecture 1: Martin’s Axiom And Domination

Week 5 Mathcamp 2011

1 Notation and Assumptions

Throughout this class, we’ll be working in ZFC. As you saw yesterday, choice is your friend!
Deal with it.

Secondly, a couple little notational things:

• We use ℵα and ωα to denote the same set-theoretic object. We’ll try to use ωα when
we mean to use it as an ordinal number, and ℵα when we mean to use it as a cardinal
number. This will often not actually happen.

• If A and B are sets, I use AB to denote the set of functions from A to B. In particular,
I use ωω to denote the set of functions from ω to ω.

2 Dominating Functions

Martin’s axiom, at first glance, is a perplexing thing. In today’s lecture, we’re going to tell
the story of why we care about this axiom: something we will do by studying dominating
functions!

Definition. Let f, g be a pair of functions in ωω. We say that f dominates g, and write
f <∗ g, if and only if there is some n0 ∈ ω such that whenever n > n0, we have

f(n) < g(n).

We say that a function g dominates an entire subset F ⊆ω ω iff g dominates every element
f ∈ F .

Suppose we have any collection of functions F ⊆ω ω. Can we find a function g that
dominates every function in F?

Theorem 1 No.

Proof. If F =ω ω, this is clearly impossible: given any candidate for a dominating function
g, the function g′ = g + 1 is also in ωω, and therefore g cannot dominate this entire set.

Ok, fine. That was a dumb question to ask. Here’s a better one: for what cardinalities
of F can we always find a function g that dominates all of F?

This might have better luck. Specifically, when F is finite, our task is trivial: if F =
{f1, . . . fk}, just define g(n) = max{f1(n), . . . fk(n)}+ 1.

How about when F is countable? Plausibly enough, we can find a dominating function
for F in this case as well:
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Theorem 2 If F is a countable subset of ωω, then there is a function g that dominates all
of F .

Proof. Let F = {fi}∞i=1. For each n, define g as follows:

g(n) =

(
max
i≤n

fi(n)

)
+ 1.

Then, for any fk ∈ F , g is strictly larger than f on all values of n ≥ k; so g is a dominating
function for F !

Sweet: so, we’ve proven that we can do this for every countable set, and we’ve proven
we can’t do it for some sets of size |ωω| = |R|. (If you don’t believe this equality, good news!
It’s on the HW!)

Can we say anything else? Well: suppose the continuum hypothesis1 holds! Then there
are no intermediate sizes of infinity, and we can’t say anything else. Sadface.

But! Suppose that the continuum hypothesis doesn’t hold! Then there are uncountable
sets F with cardinalities |ω1| < |ωω|. What can we say for these sets – do they, too, have
dominating functions (and are thus in some sense “countable-ish?”) Or are they also too
big to have dominating functions?

3 Motivation: Re-Examining Countable Sets

To get a better idea of what’s going on, let’s look at what we did in the case where we
succeeded in finding a dominating function: i.e. where F was countable. There, we con-
structed g one step at a time, as follows:

• At each step n, we chose one value for the function g.

• This isn’t all that we did! At every step, we also made a “promise” about our function
g’s later behavior Specifically, we said that at every step past this n-th step, our
function g will dominate the function fn: i.e. we’ll always pick values of g that exceed
those of fn from here on out.

The reason that countability is so nice for this process is that it allows us to proceed lin-
early: we can order our set of functions F like ω, and just proceed step-by-step! Basically,
each step gives us more information about our function; then, by taking limits, this process
will give us a beautiful fully-formed function to work with.

Unfortunately, when we have an uncountable number of functions to take care of, there’s
no way to proceed linearly: ω1, tragically, cannot be ordered in such a way to look like ω.
Whatever can we do?

1The continuum hypothesis is the assertion that the cardinality of the continuum is the cardinality of the
first uncountable ordinal: i.e. that |ω1| = |2ω|. A famous result of Gödel and Cohen asserts that the truth
of the continuum hypothesis cannot be determined from the axioms of ZFC: i.e. assuming that CH holds or
does not hold cannot create any new contradictions in ZFC.
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4 POOOOOOOOOOOOOOSET!

That’s right: Posets. Specifically: suppose we’re trying to build a function, but not in a
linear fashion (as that seems out of the question. How can we do this? Well: we’d want to
do something like the following

• At every step, we will have a finite piece of a function, which we’re going to call ϕ.

• We also have a finite set of promises that we’ve made: i.e. a finite subset F0 ⊂ F .

• When I proceed to the next step, I’m going to want an extension of my function ϕ
which keeps all the promises that I made in F0, and maybe makes a few more.

How can we realize this? Via the poset PF , which we construct here:

• Elements of PF : pairs (ϕ,F0), where ϕ is a function {1, . . . n} → ω and F0 is a
collection of “promises” that ϕ will keep.

• What do we mean by “promises?” Well: one good interpretation to make is that for
each f in F0, we promise that whenever we extend ϕ into a bigger piece of g, we will
make sure that whatever values we add for g(n) are bigger than the value of f(n).

This raises the question of what we mean by “extension.” We define this by the
ordering we have on our poset:

• We say that (ψ,F1) is an extension of (ϕ,F0), and define (ϕ,F0) ≥ (ψ,F1) in our
poset, if the following things occur:

1. ψ is an extension of ϕ: i.e. dom(ψ) ⊇ dom(ϕ), and they agree at every value
where ϕ is defined.

2. F0 ⊆ F1.

3. For any f ∈ F0, m ∈ dom(ψ) \ dom(ϕ), we have ψ(m) > f(m): i.e. ψ keeps the
“promises” that ϕ made.

What does this give us? Well: it tells us that whenever we have two elements (ϕ,F0) ≥
(ψ,F1), ψ is in some sense a “more complete” function: i.e. it’s closer to a complete
function that ϕ, and is therefore more constrained.

This is certainly a . . . thing. How can we use it to set about finding our dominating
function g, or deciding if such a thing even exists?

Well: what if we had such a dominating function g? What would it tell us about our
poset – would our poset have to satisfy certain properties?

By lecture theory2, the answer here is yes!
Specifically: let G be the collection of ordered pairs (ϕ,F0) such that

2For the literary kids out there: Chekov’s Gun is a guideline for writing good plays coined by the Russian
author/playwright Anton Chekhov. It’s best described by the following quote of Chekhov: “If in the first
act you have hung a pistol on the wall, then in the following one it should be fired. Otherwise don’t put it
there.” Lecture theory is the application of Chekhov’s Gun to mathematical lectures: if your lecturer has
asked you a rhetorical question about whether some recently-introduced object might be useful, the answer
is almost always yes. Unless they are trolling you. Which we would never do.
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1. g is an extension of ϕ.

2. For any f ∈ F0, m ∈ ω \ dom(ϕ), we have g(m) > f(m).

In other words, G is the collection of all of the finite pieces of our dominating function g.
Notice that G has the following nice properties:

1. If p, q ∈ G, then there exists r ∈ G with r ≤ p, q.

2. For all p, q ∈ PF , if p ≤ q and p ∈ G, then q ∈ G.

3. For each n ∈ ω, there exists (φ,F0) ∈ G such that n ∈ dom(φ).

4. For each f ∈ F , there exists (φ,F0) ∈ G such that f ∈ F0.

These properties are so nice, in fact, we’re going to make them into definitions!

5 Filters and Density

Definition. In a poset P, we say that a subset F is a filter iff it satisfies the following two
properties:

• If p, q ∈ F , then there exists r ∈ F with r ≤ p, q.

• For all p, q ∈ P, if p ≤ q and p ∈ F , then q ∈ F .

In posets, we will often call p a “strengthening” of q whenever we have p ≤ q; in
this sense, the first condition is the statement that says that p and q have a “common
strengthening.” In this situation, we will call p and q “compatible:” this should feel intuitive
in the poset that we’re working with, as two functions are in this sense “compatible” iff
they can be combined together into some function that is an extension of both of them.

As well, we say that sets that satisfy the second of these condtions are “closed up-
wards:” filters in this language, then, are collections of closed-upwards functions that are
all compatible.

Our collection G, in specific, is a great example of a filter.
This takes care of the first two “nice” properties of G: what about the others? We

address them here:

Definition. Given a poset P and a subset D of P, we say that D is dense iff for any p ∈ P,
there exists a strengthening q ≤ p such that q ∈ D.

Notice that the two sets

Dn := {(ϕ,F0) : n ∈ dom(ϕ)}

and

Df := {(ϕ,F0) : f ∈ F0}
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are both dense in our poset PF . Why is this? Well, take any pair (ϕ, F0) in PF . To get
something stronger than it that’s in Dn, just extend it on all of the values ≤ n that it’s not
defined on in such a way that we keep all of the promises made in F0. There are finitely
many n and finitely many promises, so this is trivial: therefore, this extended function ϕ′

can be combined with our original set of promises F0 such that (ϕ,F0) ≥ (ϕ′,F0) and
(ϕ′,F0) is in Dn.

Similarly, to get something that’s a strengthening of (ϕ,F0) in Df , just take (ϕ,F0 ∪
{f}): this is trivially a strengthening of our original element, and also something in Df . So
these sets are dense!

With this language defined, we can rephrase our earlier observations about G as follows:

• G is a filter.

• G has nontrivial intersection with the dense sets Dn, Df , for every n ∈ ω, f ∈ F .

So: given this, a somewhat natural question to ask is the following: is this even possible?
I.e. if I give you a collection of dense sets, can you find a filter that intersects them all?

In other words, consider the following possible statement:

Axiom 3 If P is a poset and {Dα | α < κ < |2ω|} is a collection of < |2ω| dense sets, then
there exists a filter G ⊆ P such that G ∩Dα 6= ∅ for all α < κ.

Is this true in ZFC? Is this even consistent with ZFC? Could this be the axiom we’re
looking for?

No!
Come back tomorrow, and we’ll tell you why this is full of lies.
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