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Week 1 Mathcamp 2011

1 The Backstory

In last year’s introduction to graph theory course (indeed, in pretty much every introductory
graph theory course) one of the first theorems we proved was the following:

Theorem 1 A graph1 G is bipartite2 if and only if it doesn’t contain any odd-length cycles3.

It’s been a while for most of you since you were last in a graph theory course, so as a
warm-up we’ll reprove this result, to get you all used to the terminology again:

Proof. First, let’s take any graph G that contains a cycle C2k+1 of odd length. Consider
any coloring of V (G)’s vertices by the colors red and blue; this coloring will also color the
vertices of Ck. We claim that this coloring will force C2k+1 to contain a monochromatic
edge.

Indeed, if it didn’t, then (if you suppose vk+1 was red without any loss of generality,)
you’d have

• vk+1 being red force

• vk, vk+2 to be blue, which will force

• vk−1, vk+3 to be red, which wil force

• . . .

• which will force v1, v2k+1 to both be the same color; a contradiction.

So it suffices to prove the other direction. Without loss of generality we can assume G
is connected4, by simply applying our proof to each of G’s connected components.

To do this, take any vertex y ∈ V (H), and construct the following sets:

• N0 = {w : d(v, y) = 0}

• N1 = {w : d(v, y) = 1}

• N2 = {w : d(v, y) = 2}
1A graph is a collection of vertices V and unordered pairs of distinct vertices E.
2A graph is bipartite iff there’s a way to color all of its vertices either red or blue, so that none of its

edges have both of their endpoints the same color.
3A cycle Cn is a graph correpsonding to a n-gon.
4A graph G is connected if there is a path between any two vertices in G; a path in G is just a sequence

of vertices and edges in G
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• . . .

• Nn = {w : d(v, y) = n}

Notice that every vertex shows up in precisely one of these sets, as d(x, y), the length of
the shortest path from x to y, is a well-defined object. As well, notice that for any x ∈ Nk

and any path P given by y = v0e01v1e12 . . . ek−1,kvk = x, each of the vertices vj lies in Nj .
This is because each of these has a path of length j from y to vj (just take our path and
cut it off at vj), and has no shorter path (by definition.)

Now, color all of the vertices in the even N -sets red, and all of the vertices in the odd
N -sets blue. We claim that there are no monochromatic edges.

To see this, take any edge {v1, v2} in our graph H. Let d(y, v1) = k and d(y, v2) = l,
P1 and P2 a pair of paths from v1, v2 to y with those lengths k, l, x to be the furthest-away
vertex from y that’s in both of those paths, and P ′1, P

′
2 be the paths we get by starting

P1, P2 at x instead and proceeding to v1, v2.
Then, either x was one of v1 or v2 (in which case the distances of v1 and v2 from y have

different parities, and therefore v1 and v2 are different colors), or the combination of P ′1, P
′
2,

and the edge {v1, v2} forms a cycle, which cannot have odd length; this forces the lengths
of P ′1 and P ′2 to again have different parities, and therefore (again) forces v1 and v2 to have
different colors. There are therefore no monochromatic edges, and we have created a proper
2-coloring of our graph G, which means it’s bipartite.

Later on in the course, we took this notion of “bipartite graphs” – graphs that can have
their vertices colored red and blue, so that no edge has both of its endpoints the same color
– and extended it to the idea of a k-coloring. We repeat this definition here:

Definition. A graph G is k-colorable if we can assign the colors {1, . . . k} to the vertices
in V (G), in such a way that every vertex gets exactly one color and no edge in E(G) has
both of its endpoints colored the same color. For a fixed graph G, if k is the smallest number
such that G admits a k-coloring, we say that the chromatic number of G is k, or that G is
k-chromatic or k-partite, and write χ(G) = k.

A natural question to ask, given our first theorem, is whether we can come up with a
similar characterization for (say) all of the 3-chromatic graphs– in other words, whether we
can classify all of the graphs that admit a 3-coloring by a criterion as simple as “doesn’t
have any odd cycles.” Surprisingly, there doesn’t seem to be any such simpler classification;
while graph theorists have certainly uncovered tons of 3-chromatic graphs, there doesn’t
seem to be any unifying theme or property tying them together beyond needing 3 colors to
properly color them.

A (perhaps more promising) question to ask, then, is this: is there a way to just simply
classify all of the graphs with large chromatic number? In other words, if I tell you that a
graph has chromatic number 3 · 108, can you tell me anything about that graph at all?

One of the simplest bounds we came up with, in this class, was that the chromatic
number of a graph was bounded below by its clique number5:

ω(G) ≤ χ(G).

5The clique number of a graph, ω(G), is the largest value of k for which there is an induced subgraph in
G isomorphic to Kk.
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Is this bound tight? I.e. if we look at that graph with chromatic number 3 · 108, will
we find a large complete subgraph sitting somewhere inside of it? Such a claim certainly
sounds promising: certainly, if you try checking some examples by hand or constructing a
graph with a high chromatic number, you’ll almost certainly find that it has a subgraph
isomorphic to a rather large complete subgraph.

Given this, then, the following construction of Mycielski is rather surprising:

Example. The Mycielski construction, described here, is a method for turning a triangle-
free graph with chromatic number k into a larger triangle-free graph with chromatic number
k + 1. It runs as follows:

• As input, take a triangle-free graph G with χ(G) = k and vertex set {v1, . . . vn}.

• Form the graph G′ as follows: let V (G′) = {v1, . . . vn} ∪ {u1, . . . un} ∪ {w}.

• Start with E(G′) = E(G).

• For every ui, add edges from ui to all of vi’s neighbors.

• Finally, attach an edge from w to every vertex {u1, . . . un}.

Starting from the triangle-free 2-chromatic graph K2, here are two consecutive applications
of the above process:

Proposition 2 The above process does what it claims: i.e. given a triangle-free graph with
chromatic number k, it returns a larger triangle-free graph with chromatic number k + 1.

Proof. Let G,G′ be as described above. For convenience, let’s refer to {v1, . . . vn} as V
and {u1, . . . un} as U . First, notice that there are no edges between any of the elements
in U in G′; therefore, any triangle could not involve two elements from U . Because G was
triangle-free, it also could not consist of three elements from V ; finally, because w is not
connected to any elements in V , no triangle can involve w. So, if a triangle exists, it must
consist of two elements vi, vj in V and an element ul in U ; however, we know that ul’s only
neighbors in V are the neighbors of vl. Therefore, if (vi, vj , ul) was a triangle, (vi, vj , vl)
would also be a triangle; but this would mean that G contained a triangle, which contradicts
our choice of G.

Therefore, G′ is triangle-free; it suffices to show that G′ has chromatic number k + 1.
To create a proper k + 1-coloring of G′: take a proper coloring f : V (G) → {1, . . . k}

and create a new coloring map f ′ : V (G′)→ {1, . . . k + 1} by setting

• f ′(vi) = f(vi),
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• f ′(ui) = f(vi), and

• f(w) = k + 1.

Because each ui is connected to all of vi’s neighbors, none of which are colored f(vi), we
know that no conflicts come up there; as well, because f(w) = k + 1, no conflicts can arise
there. So this is a proper coloring.

Now, take any k-coloring g of G′: we seek to show that this coloring must be improper,
which would prove that G′ is k+ 1-chromatic. To do this: first, assume without any loss of
generality that f(w) = k (it has to be colored something, so it might as well be k.)

Then, because w is connected to all of U , the elements of U must be colored with the
elements {1, . . . k − 1}. Let A = {vi ∈ V : g(vi) = k}. We will now use U to recolor these
vertices with the colors {1, . . . k − 1}: if we can do this properly, then we will have created
a k − 1 proper coloring of G, a k-chromatic graph (and thus arrived at a contradiction.)

To do this recoloring: change g on the elements of A so that g(vi)’s new color is g(ui).
We now claim that g is a proper k−1 coloring of G itself. To see this: take any edge {vi, vj}
in G. If both of vi, vj /∈ A, then we didn’t change the coloring of vi and vj ; so this edge
is still not monochromatic, because g was a proper coloring of G′. If vi ∈ A and vj /∈ A,
then vj is a neighbor of vi and thus (by construction) ui has an edge to vj . But this means
that g(ui) 6= g(vj), because g was a proper coloring of G′: therefore, this edge is also not
monochromatic!

Because there are no edges between elements of A (as they were all originally colored k
under g, and therefore there weren’t any edges between them,) this covers all of the cases:
so we’ve turned g into a k−1 coloring of a k-chromatic graph. As this is impossible, we can
conclude that g cannot exist – i.e. G′ cannot be k-colored! So χ(G′) = k + 1, as claimed.

As the above construction shows, our bound of ω(G) ≤ χ(G) can be remarkably useless:
using it, we can make graphs where ω(G) = 2 and χ(G)→∞!

Surprisingly, this result can be extended to avoiding all short cycles, not just triangles!
Erdős in the 60’s, as one of the first applications of probabilistic methods to graph theory,
showed that almost every graph G on n vertices has high chromatic number and relatively
few short cycles, and therefore (by deleting a few edges) there are graphs with chromatic
number and girth6 as large as we like! In other words, there are tons of graphs out there
that locally look like trees (i.e. locally look 2-chromatic) but in fact require a ton of colors
to properly color.

In 1976, Nešetřil and Rödl created an explicit construction for such graphs. We state
it at the end of the HW/recommend it only for rather interested students, as it’s kind of
complicated (and may scare off some people who would otherwise be fine in this course!)

So: the moral of this lecture is that having a large chromatic number can be a purely
global phenomenon, and have very little to do with the local behavior of your graph. As
graph theorists, what can we do about this? In our next lecture, we’ll start with some
ideas. . .

6A graph G has girth k if the length of the shortest cycle in G is k.
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