erfect Graph Theory	Instructor: Padraic B	artlett
	Homework 4	
Veek 1	Mathcam	p 2011
Veek 1		Mathcam

The problems below are completely optional; attempt the ones that seem interesting to you! Easier exercises are marked with (-) signs; harder ones are marked by (*). Open questions are denoted by writing (**), as they are presumably quite hard.

- 1. (-) A graph G is called **minimally imperfect** if $\omega(G) \neq \chi(G)$, but for any induced subgraph H of G, $\omega(H) = \chi(H)$. Show that if a graph is imperfect, that it must contain a minimally imperfect subgraph.
- 2. (-) Show that any odd cycle of length ≥ 5 is minimally imperfect.
- 3. (*) A cutset S of a graph G is a collection of vertices S such that $G \setminus S$ is disconnected. A star-cutset S of a graph G is a cutset such that there is some vertex $x \in S$, such that x has an edge to every other element in S.

Using these definitions, prove the **Star-Cutset Lemma Lemma**: Suppose you have any graph G such that (1) every proper induced subgraph of G is $\omega(G)$ -colorable, and (2) G does not contain an indepedent set that intersects all of its maximal cliques. Then G does not contain a star-cutset.

- 4. (-) Using the Star-Cutset Lemma Lemma, prove the **Star-Cutset Lemma**: No minimally imperfect graph has a star-cutset.
- 5. Use the Star-Cutset Lemma to prove that taking a perfect graph and replacing one of its vertices with another perfect graph is perfect.