
Perfect Graph Theory Instructor: Padraic Bartlett

Homework 5

Week 1 Mathcamp 2011

The problems below are completely optional; attempt the ones that seem interesting to you!
Easier exercises are marked with (−) signs; harder ones are marked by (∗). Open questions
are denoted by writing (∗∗), as they are presumably quite hard.

1. (∗) Prove Gasparian’s theorem: A graph G is perfect if and only if for every induced
subgraph H of G, we have

χ(H) ≥ |V (H)|
α(H)

.

Hint: Proceed by induction on |V (H)|. By induction, you know that every induced
subgraph of G is perfect; so it suffices to prove that χ(G) = ω(G), for G a graph on
the vertex set {1, . . . n}. Now, proceed by contradiction: assume that χ(G) > ω(G).

Prove that if this is true, then if U is any independent set in G, we have χ(G \ U) =
ω(G \ U) = ω(G).

Having done that let A0 = {u1, . . . uα} be an independent set in G of size α = α(G);
for each ui, let A1+iω, . . . A(i+1ω be the ω-different color classes of a proper ω coloring
of G \ {ui}. As well, for each Ai there is a complete graph on ω vertices in G \ Ai:
call this graph Ki.

Show that Ki ∩Aj is empty for exactly one j.

From here (and this is the twist!), let J be the αω+1 by αω+1 matrix with 0’s down
its diagonal and 1’s everywhere else; let A be the real αω + 1× n matrix whose rows
are the incidence vectors of the Ai’s with elements in V (G); and let B be the real
n× αω + 1 matrix whose rows are the incidence vectors of the Ki’s with elements in
V (G).

Prove that

J = AB.

Conclude that

χ(G)ω(G) + 1 ≤ |V (H)|,

and thus that there is a contradiction.

2. Use the above theorem to prove that if G is a minimally imperfect graph on n vertices,
then

χ(G)α(G) + 1 = n.

3. Prove any of the old problems! Alternately, if you’ve already done them all/want
something tricky to think about, consider the following construction I mentioned on
Monday:
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1 Bonus: Nešetřil and Rödl’s Construction

We state the construction here, and leave it to the reader to supply the proof:

Definition. A k-hypergraph G = (V, E) consists of the following:

• V , a collection of vertices, and

• E , a collection of subsets of V of size k, all of which are distinct.

Basically, this is a generalization of the idea of a graph, where we’re saying that an
edge consists of k elements, and not just 2. Simple graphs are just 2-hypergraphs, for
instance.

Definition. A cycle in a k-hypergraph G = (V, E) is a collection of edges M1, . . .Mn

such that Mi ∩Mi+1 mod n is nonempty, for every 1 ≤ i ≤ n.

Definition. A k-hypergraph G = (V, E) is said to be a-partite or a-colorable if and
only if there is a way to color the vertices of G with a colors, {1, 2, . . . a}, such that
no edge E ∈ E contains two or more vertices of the same color. We say that χ(G) = a
if a is the smallest value such that G is a-colorable.

Definition. Let G = (V, E) be a k-hypergraph with χ(G) ≤ a, f be a proper a-
coloring of G, r be a fixed color from the set {1, . . . a}, and K be the number of
vertices colored r in G. Let H = (W,F) be a K-hypergraph.

Then, define the r-amalgamation (W,F) ∗ (V, E) of these two hypergraphs as the
following a-colorable k-hypergraph (X,Y):

• Let Vi denote all of the vertices in V colored i under our coloring map f .

• Let Xr = W , and Xi = Vi×F , where this product is understood as the Cartesian
set product.

• Let X, our vertex set, be the disjoint union of these Xi’s, and let g be the coloring
of these vertices given by our subscripts.

• For every edge F ∈ F , pick a bijection ιF : Xr → F . It doesn’t matter what you
pick here, so long as we fix one for every edge.

• Finally, we say that a k subset Y of X is an edge in Y if and only if the following
holds: There are a pair of edges E ∈ E , F ∈ F such that

– Y ′ ∩Xr = ιF (E ∩ Vr), and

– Y ∩Xi = (E ∩ Vi, F ).

This sounds kind of awful, but in reality all we’re doing is taking |F| many identical
copies of (V, E), and identifying the copies of Xr with (W,F).

With these definitions out of the way, we can finally proceed to our theorem:
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Theorem 1 There are k-hypergraphs with chromatic number ≥ n and girth ≥ p, for
any k, n, p.

Proof. Fix any value of n and k: we prove our statement by inducting on p. For
p = 1 our statement is trivially true, as cycles of length 1 do not exist; now, assume
that we’ve proven our claim for all p′ ≤ p. We seek to construct a k-hypergraph with
chromatic number ≥ n and no cycles of length p+ 1 or smaller.

Let a = (k − 1)n + 1. We inductively create a family of a + 1 different a-colorable
k-hypergraphs, as follows:

• Let (V 0, E) be the a-colored hypergraph defined by

– V 0 = {1 . . . a}k × {1, . . . k}
– V 0

i = {(c1, . . . ck, j) : cj = i}
– E = {{(c1, . . . ck, 1), (c1, . . . ck, 2), . . . (c1, . . . ck, k)} : the ci’s are k distinct

fixed colors. }.
The upshot of this is that this graph is a-colorable, has no paths in it at all, and
yet for any choice of k distinct colors has an edge with all of those colors in it.

• Given a graph ({V i
j }

n+1
j=1 , E), construct a new graph as follows:

– Let |V i
i | = Ki.

– Using our inductive hypothesis, let (W i,F i) be a Ki-hypergraph without
any cycles of length ≤ p.

– Define ({V i+1
j }n+1

j=1 , E) as the amalgamation (W i,F i) ∗ (V i, E).

Running this process a times yields a graph ({V a+1
j }n+1

j=1 , E). You can show that this
graph has chromatic number ≥ n and girth ≥ p+ 1 without much more difficulty!
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