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Lecture 3: Turning Eigenvalues Into Information

Week 3 Mathcamp 2011

Last lecture/in TAU, I had a number of students ask me just what these eigenvalues
“represent ” in a graph. Today, we’ll start answering that question!

1 Basic Applications of Eigenvalues

In our introduction to graph theory course, pretty much the first interesting thing we did
was characterize bipartite graphs. As it turns out, we can do the same thing here in terms
of the spectra:

Proposition 1 If a graph G is bipartite, its spectrum is symmetric about 0; that is, for
any bipartite graph G, λ is an eigenvalue of AG if and only if −λ is.

Proof. Write G = (V1 ∪ V2, E),, where V1 = {1, 2, . . . k} and V2 = {k + 1, k + 2, . . . n}
partition G’s vertices. In this form, we know that the only edges in our graph are from V1
to V2. Consequently, this means that AG is of the form

0 B

BT 0
,

where the upper-left hand 0 is a k × k matrix, the lower-right hand 0 is a n − k × n − k
matrix, B is a (n− (k + 1))× k matrix, and BT is the transpose of this matrix.

Choose any eigenvalue λ and any eigenvector (v1, . . . vk, wk+1, . . . wn) = (v,w). Then,
we have

AG · (v,w) =
0 B

BT 0
·
[

v
w

]
=

[
B ·w
BT · v

]
=

[
λ · v
λ ·w

]
= λ

[
v
w

]
But! This is not the only eigenvector we can make out of v and w. Specifically, notice

that if we multiply AG by the vector (v,−w), we get

AG · (v,−w) =
0 B

BT 0
·
[

v
−w

]
=

[
−B ·w
BT · v

]
=

[
−λ · v
λ ·w

]
= −λ

[
v
−w

]
.

In other words, whenever λ is an eigenvalue of AG, −λ is as well!

As well, one of the next things we studied was how certain key properties (like χ(G))
depended on the maximum degree of the graph, ∆(G). As this provides an upper bound on
the overall density of our graph, it seems like a natural candidate for something to bound
our eigenvalues by. We make this explicit in the following proposition:

Proposition 2 If G is a graph and λ is an eigenvalue of AG, then |λ| ≤ ∆(G).
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Proof. Take any eigenvalue λ of AG, and let v = (v1, . . . vn) be a corresponding eigenvector
to λ. Let vk be the largest coördinate in v, and (by scaling v if necessary) insure that vk = 1.

We seek to show that |λ| ≤ ∆(G). To see this, simply look at the quantity |λ · vk|. On
one hand, we trivially have that this is |λ|.

On the other, we can use the observation that v is an eigenvector to notice that

|λ · vk| = |(ak1, ak2, . . . akn) · (v1, . . . vn)|

=

∣∣∣∣∣∣
n∑

j=1

akjvj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

n∑
j=1

akjvk

∣∣∣∣∣∣ =

∣∣∣∣∣∣vk
n∑

j=1

akj

∣∣∣∣∣∣
≤ |vk ·∆(G)| = ∆(G).

When is the above bound tight? With many graph properties (like, again, χ(G),)
answering this question is usually difficult. Here, however, it’s actually quite doable!, as we
demonstrate in the next proposition:

Proposition 3 A connected graph G is regular if and only if ∆(G) is an eigenvalue of AG.

Proof. As this is an if and only if, we have two directions to prove.
(⇒:) If G is regular, then each vertex in G has degree ∆(G). This means (amongst

other things) that there are precisely ∆(G) 1’s in every row of AG. Consequently, if we look
at AG · (1, 1, 1 . . . 1), we know that we get the vector (∆(G),∆(G), . . .∆(G)): i.e. ∆(G) is
an eigenvector!

(⇐:) As before, pick an eigenvector v for our eigenvalue ∆(G), let vk be the largest
component of v, and rescale v so that vk = 1. Then, just as before, we have

|∆(G)| = |∆(G) · vk| = |(ak1, . . . akn) · (v1, . . . vn)|

=

∣∣∣∣∣
n∑

i=1

akivi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

akivk

∣∣∣∣∣ = |vk|

∣∣∣∣∣
n∑

i=1

aki

∣∣∣∣∣ = deg(vk)

≤ ∆(G),

and therefore deg(v) = ∆(G).
But wait! If the above is true, we actually have

|∆(G)| =

∣∣∣∣∣
n∑

i=1

akivi

∣∣∣∣∣ = ∆(G),

and therefore vi is equal to 1 for every i adjacent to k! Therefore, we can repeat the above
argument for every i adjacent to k, and show that the degree of all of these vertices are
also ∆(G). Repeating this process multiple times shows that the degree of every vertex is
∆(G), and therefore that G is regular.
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Proposition 4 If G is a graph with diameter1 d ∈ N, then AG has at least d + 1 distinct
eigenvalues.

Proof. First, recall the spectral theorem, which says that (because AG is real-valued and
symmetric) we can find an orthonormal basis for Rn made out of AG’s eigenvectors. Let
~e1, . . . ~en be such a basis of orthonormal eigenvectors, and let the collection of distinct
eigenvalues of AG be θ1, . . . θt.

Examine the product D = (AG−θ1 · I) · (AG−θ2 · I) · . . . (AG−θt · I); specifically, notice
that the order of the θi’s doesn’t matter in this above product, as

(AG − θ1 · I) · (AG − θ2 · I) · . . . (AG − θt · I)

=At
G −

(
n∑

i=1

θi

)
At−1

G + . . .+ (−1)t
t∏

i=1

θi · I,

and the θs in each of the coefficients above clearly commute.
What happens when we multiply D on the right by any of these ~eit ’s? Well: if we

permute the (AG − θI)’s around so that (AG − θitI) is the first term, we have

(AG − θi1 · I) · (AG − θi2 · I) · . . . (AG − θit · I) · eit
=(AG − θi1 · I) · (AG − θi2 · I) · . . . · (AG · eit − (θit · I) · eit)
=(AG − θi1 · I) · (AG − θi2 · I) · . . . · 0
=0.

But this means that D sends all of the ~ei’s to 0: i.e. that D sends all of these basis
vectors for Rn to 0! In other words, this forces D = 0.

But what does this mean? Using our expansion above of D into a polynomial, we’ve
just shown that

At
G −

(
n∑

i=1

θi

)
At−1

G + . . .+

t∏
i=1

θi · I = 0,

which means that

At
G =

(
n∑

i=1

θi

)
At−1

G + . . .−
t∏

i=1

θi · I.

What would happen if the diameter d is greater than t − 1? It would mean that there
are two vertices i, j such that d(i, j) = t, at the very least! But this would mean that the

1The diameter of a graph G is the longest distance between any two vertices in a graph.
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(i, j)-th entry of At
G would be nonzero (as there is a path of length t between them), while

the (i, j)-th entry of Ak
G would be zero for every k < t (as there are no paths of shorter

length linking them.) But this is impossible, because we’ve written At
G as the sum of these

smaller matrices!
Therefore, this cannot occur: i.e. we have d ≤ t− 1, which is what we wanted to prove.
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