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Lecture 2: Spectral Theory and Decomposition Problems, part 2/2

Week 4 Mathcamp 2011

In our last lecture, we introduced the Lagrangian, a function Rn → R defined as
follows:

fG(v) = 〈AGv,v〉 = (AGv)T · v =
∑

{i,j}∈E(G)

2vivj .

We introduced this function because we wanted something that would allow us to distin-
guish between graphs that have “many” positive eigenvalues and graphs that have “many”
negative eigenvalues. This function did this, in the following sense:

Proposition 1 The Lagrangian function fG is (positive-semidefinite/positive-definite/negative-
semidefinite/negative-definite) on the space generated by all of the eigenvectors correspond-
ing to (nonnegative/positive/nonpositive/negative, respectively) eigenvalues.

To illustrate the usefulness of this tool, here’s an application:

Theorem 2 The complete graph Kn cannot be decomposed into ≤ n− 2 complete bipartite
graphs.

Proof. First, notice that (given the intuition we’ve developed earlier) we would expect
this to be a problem: on one hand, we have Spec(Kn) = {(n − 1)1, (−1)n−1}, which has
a lot of negative eigenvalues, while Spec(Km,n) = {±

√
mn, 0n−2} has a lot of nonnegative

eigenvalues.
But how does our tool tell us this? In other words, suppose that we had some such

decomposition of Kn into n − 2 complete bipartite graphs G1, . . . Gn−2; to make our lives
easier, add vertices to each of these Gi’s so that they’re all on n vertices. Because adding
an unconnected vertex to a graph changes the spectrum by adding a 0-eigenvalue, these
graphs all have spectrum {±ab, 0n−2}.

So: how can we use the Lagrangian? Well, one nice observation we can make about
the Lagrangian is that it distributes across graph decompositions: i.e. because AKn =
AG1 + . . . AGn−2 , we have

fKn =
n−2∑
i=1

fGi .

How can we use this? Well, notice that each AGi has a n − 1-dimensional space corre-
sponding to its nonnegative eigenvectors – call it Ui, say. Then, because we have n − 2 of
these spaces, the intersection of all of these spaces is at least dimension 2. But this means
that there is a 2-dimensional space on which the function

∑n−2
i=1 fGi is positive semidefinite.

However: this is actually fKn in disguise! And fKn is negative-definite on a space of
dimension n − 1; i.e. there’s only one dimension of space in which fKn doesn’t take on
negative values! So this is clearly a contradiction.
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Excellent! The Lagrangian works! Win.

. . . what else can we do with it?

1 Finding Structure in Graphs

In the above argument, we used the Lagrangian to find problems with given graph decom-
positions. Can we reverse this kind of argument – i.e. can we use the Lagrangian to show
that graphs with certain properties must contain certain kinds of subgraphs?

It turns out that the answer is yes! Specifically, we can use the Lagrangian to pick out
the clique number of a graph, in the following way: let

f(G) = max
s∈S

fG(s),

where S = {s :
∑n

i=1 si = 1, si ≥ 0}. In a certain sense, then, f(G) is picking out the
pockets of “density” in our graph G: i.e. if you think of s as a weighting of the vertices on
our graph, the maximal value of fG(s) is attained where s is concentrated on the vertices
with “lots” of edges.

We make this rigorous with the following two observations:

Proposition 3 f(Kn) = (n− 1)/n.

Proof. Simply note that

f(G) = max
s∈S

fG(s)

= max
s∈S

∑
{i,j}∈E

2aijsisj

= max
s∈S

n∑
i=1

∑
j 6=i

sisj

= max
s∈S

n∑
i=1

si
∑
j 6=i

sj

= max
s∈S

n∑
i=1

si(1− si)

= max
s∈S

(
n∑

i=1

si

)
−

(
n∑

i=1

s2i

)

= max
s∈S

1−

(
n∑

i=1

s2i

)
,

which is maximized by the point in S closest to the origin: i.e. (1/n, 1/n, . . . 1/n). At this
point, we have fG(1/n, . . . , 1/n) = (n− 1)/n, as claimed.
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Proposition 4 Let G be a graph with clique number k. Then f(G) = (k − 1)/k.

Proof. Let S′ be the collection of points s ∈ S where fG attains its maximum, and amongst
these points let y be a point in this collection with the smallest support: i.e. one with
the most coördinates equal to 0 in our collection.

As it turns out, if you do this and look at the coördinates of y that aren’t zero, you get
a complete graph! To see why, suppose not: i.e. that you have two coördinates y1, y2 with

• y1, y2 > 0, and

• {y1, y2} /∈ E(G).

Let

y1

n∑
j=1

2a1jyj

be the portion of fG(y) that depends on y1, and

y2

n∑
j=1

2a2jyj

be the portion of fG(y) that depends on y2. One of the two sums
∑n

j=1 2a1jyj ,
∑n

j=1 2a2jyj
has to be larger (or equal); assume it’s the first, without any loss of generality. Then,
because there isn’t an edge between y1 and y2, we have that the two inequalities

y2

n∑
j=1

2a2jyj ≤ y2

n∑
j=1

2a1jyj ,

y1

n∑
j=1

2a1jyj = y1
∑
j 6=2

2a1jyj

hold, which forces

⇒ y1

n∑
j=1

2a1jyj + y2

n∑
j=1

2a2jyj ≤ (y1 + y2)

n∑
j=1

2a1jyj

and thus that fG(y) ≤ fG(y1 + y2, 0, y3, . . . yn). This element is also in S and has one more
zero-coördinate than y did: a contradiction to y’s minimality! So we’ve proven our claim.

So: we’ve used the Lagrangian to not just show that certain decompositions are impos-
sible, but also that certain graphs must have various structures – i.e. f(G) is completely
determined by the clique number! This allows us to prove the following result with almost
no effort at all:
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Theorem 5 Suppose that r is a constant and G is a graph with n vertices and m edges,
with m > r−1

2r n2. Then G contains Kr as a subgraph.

Proof. If you plug in (1/n, . . . 1/n) into fG, you get

2m

n2
≥ r − 1

r
.

But, on the other hand, you know that

(ω(G)− 1)/(ω(G)) = f(G) ≥ fG(1/n, . . . 1/n),

and thus that ω(G) ≥ r.

Proving this theorem without linear algebraic machinery is a lot of extra work; here, we
get it for essentially free!
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