
Many Campers Sort Piles Instructor: Padraic Bartlett

Lecture 1: What is an Algorithm?

Week 4 Mathcamp 2012

Hello, and welcome to Many Campers Sort Piles, a week-long introduction to the theory
and practice of algorithm design with an emphasis on the study of sorting algorithms.
This course will be heavily example-based; in the next four lectures, we hope to introduce
the ideas of algorithms, recursion, randomness and comparative and noncompar-
ative algorithms, along with a number of instances of their practical (and impractical!)
applications. There will be HW assignments, but completing them will not be necessary
for understanding or enjoying the course; rather, they are present so that you can see some
concepts we won’t have to discuss in class, because there are far more beautiful things in
this field than we’ll be able to cover in lecture!

We start by defining the concept of an algorithm, and presenting a few examples. If
you’re interested in a longer and (I believe) more elegant treatment, Jeff Erickson’s online
course notes on algorithms are some of the best-written notes I’ve read on the subject, and
are one of the primary sources for this course.

1 Defining Algorithms

Definition. An algorithm is a precise and unambiguous set of instructions.

Typically, people think of algorithms as a set of instructions for solving some problem; when
they do so, they typically have some restrictions in mind for the kinds of instructions they
consider to be valid. For example, consider the following algorithm for proving the Riemann
hypothesis:

1. Prove the Riemann hypothesis.

2. Rejoice!

This is not a terribly useful algorithm. Typically, we’ll want to limit the steps in our
algorithms to mechanically-reproducible steps: i.e. operations that a computer could easily
perform, or operations that a person could do with relatively minimal training.

For example, suppose that your space of allowable steps were operations you could
perform with a compass and straightedge: specifically, suppose that you can connect points
with a straight line using the straightedge, and draw a circle with a given center through
any other point with the compass. Then you can solve the following problem:

Problem. Take any line L in R2 and any point P not on L. Can you construct a line
through P that’s perpendicular to L?

Algorithm. Take as input any line L and point P not on L, and consider the following
process:

1

http://compgeom.cs.uiuc.edu/~jeffe//teaching/algorithms/
http://compgeom.cs.uiuc.edu/~jeffe//teaching/algorithms/


1. Pick any point on L. Call it A.

2. Draw a circle centered at P through A.

3. If this circle only intersects L at A and no other point, draw a line through A and P .
This line is perpendicular to L.

4. Otherwise, it intersects L at some other point B. Draw a circle through A centered
at B, and another circle through B centered at A.

5. These two circles must intersect at two points: find them and call them C,D.

6. Connect C and D. This is a line that is perpendicular to L, and that goes through
P .

We illustrate a sample run of our algorithm below:

P

A

B

L

Note that algorithms do not need to contain within themselves a proof that they work;
while the above process indeed creates a perpendicular line to L through P , it does not
explain the geometry behind why it does so. In general, when we construct algorithms, it’s
good form to possibly explain after we’ve done so why our algorithm performs the task
we claim it does; while we won’t always do this in this class, we will attempt to do so
whenever we study an algorithm whose functionality isn’t immediately obvious. Also, note
that we’ve included a sample run of our algorithm after describing it. This is one of the
most important things you can do with any algorithm, whenever possible; it can often turn
a difficult and confusing writeup into a much clearer solution. Do this!

Another example of an algorithm is the process of “peasant multiplication,” a process
for multiplying large numbers developed in the 1400’s to allow relatively innumerate people
to perform otherwise-difficult calculations.

Problem. Take any two positive integral numbers x, y, and suppose that the only opera-
tions you have are the ability to add a number to itself, divide a number by two (rounding
down), and to calculate the parity (even or odd) of any number. Can you efficiently calculate
x · y?

2



Algorithm. Take as input any two positive integers x, y. Consider the following algorithm:

1. Define a new number prod, and initialize it (i.e. set it equal) to 0.

2. If x = 0, stop, and return the number prod.

3. Otherwise, if x is odd, set prod = prod + y.

4. Regardless of what x was in the step above, set x = bx/2c, and y = y + y.

5. Go to step 2.

Roughly speaking, this algorithm succeeds because we can write

x · y =


0, x = 0,

bx/2c · (y + y), x even,
bx/2c · (y + y) + y, x odd,

and this algorithm is a repeated application of this fact.
We illustrate this algorithm below, on input x = 123, y = 231:

run prod x y

initialization 0 123 231
1 231 61 462
2 693 30 924
3 693 15 1848
4 2541 7 3696
5 6237 3 7392
6 13629 1 14784
7 28413 0 29568

stop 28413 − −

2 Examples of Sorting Algorithms

Throughout this class, we’re going to primarily focus on sorting algorithms: algorithms
that take in a list L = (l1, . . . ln) of objects, along with some method ≤ of comparing any
two elements in our list. Given this, our algorithm will want to output a sorting of L: i.e.
some permutation (l′1, . . . l

′
n) of the elements of L, so that l′1 ≤ l′2 ≤ . . . l′n.

Our first example, bubblesort, is a relatively classical and beautiful sorting algorithm:

Algorithm. Take as input some list L = (l1, . . . ln) of objects, along with some operation
≤ that can compare any two of these elements. Perform the following algorithm:

1. Create a integer variable loc and a boolean variable didSwap.

2. Set the variable loc to 1, and didSwap to false.

3. While the variable loc is < n, perform the following steps:

3



(a) If lloc > lloc+1, swap the two elements lloc, lloc+1 in our list and set didSwap to
true.

(b) Regardless of whether you swapped elements or not, add 1 to the variable loc,
and go to 3.

4. If didSwap is true, then go to 2.

5. Otherwise, if didSwap is false, we went through our entire list and never found any
pair of consecutive elements such that the second was larger than the first. Therefore,
our list is sorted! Output our list.

A sample run of this algorithm on the list (1, 4, 3, 2, 5) is presented below:

run step didSwap loc L

1 2 false 1 (1, 4, 3, 2, 5)
1 3(a) false 1 (1,4, 3, 2, 5)
1 3(b) false 2 (1,4, 3, 2, 5)
1 3(a) true 2 (1,3,4, 2, 5)
1 3(b) true 3 (1,3,4, 2, 5)
1 3(a) true 3 (1, 3,2,4, 5)
1 3(b) true 4 (1, 3,2,4, 5)
1 3(a) true 4 (1, 3, 2,4,5)
1 3(b) true 5 (1, 3, 2,4,5)
1 4 true 5 (1, 3, 2, 4, 5)
2 2 false 1 (1, 3, 2, 4, 5)
2 3(a) false 1 (1,3, 2, 4, 5)
2 3(b) false 2 (1,3, 2, 4, 5)
2 3(a) true 2 (1,2,3, 4, 5)
2 3(b) true 3 (1,2,3, 4, 5)
2 3(a) true 3 (1, 2,3,4, 5)
2 3(b) true 4 (1, 2,3,4, 5)
2 3(a) true 4 (1, 2, 3,4,5)
2 3(b) true 5 (1, 2, 3,4,5)
2 4 true 5 (1, 3, 2, 4, 5)
3 2 false 1 (1, 3, 2, 4, 5)
3 3(a) false 1 (1,2, 3, 4, 5)
3 3(b) false 2 (1,2, 3, 4, 5)
3 3(a) false 2 (1,2,3, 4, 5)
3 3(b) false 3 (1,2,3, 4, 5)
3 3(a) false 3 (1, 2,3,4, 5)
3 3(b) false 4 (1, 2,3,4, 5)
3 3(a) false 4 (1, 2, 3,4,5)
3 3(b) false 5 (1, 2, 3,4,5)
3 4 false 5 (1, 2, 3, 4, 5)
3 5 − − (1, 2, 3, 4, 5)

4



One property we like to study in algorithms is the idea of runtime. For example, if
we put the list (2, 3, 4, 5, 1) into the bubblesort algorithm above, it will take five different
passes through our list to sort this into the order (1, 2, 3, 4, 5): specifically, each pass will
move the symbol 1 one step over to the left and otherwise not change anything. In general,
a list of the form (2, 3, . . . n, 1) will take n passes, and require us to go through roughly n2

many steps (up to some smaller-order linear and constant bits of extra work we’ll have to
do.)

This, roughly speaking, is the worst-case scenario for bubblesort: after one run of bub-
blesort, we can see from examining the algorithm that the largest element will be in the
last place in our list (because as soon as we get to it, we’ll always swap it with successive
elements until it gets to the last spot.) A second run insures that the second-largest ele-
ment gets to the second-largest spot, and so on/so forth: therefore, we know that n runs
will always suffice.

We say that bubblesort has worst-case runtimes of O(n2), based on this analysis:
roughly speaking, the worst bubblesort can do is take n passes, and therefore needs at
most some constant ·n2 many steps to sort a list. However, there are many lists on which
bubblesort will perform markedly better than this: for example, if we have a list of the form
(n, 1, 2 . . . n − 1), bubblesort will sort it in exactly one pass, i.e. in O(n) many steps. So,
while bubblesort may seem slow in general, it may actually be rather fast on certain kinds
of lists! (Formally: we say that some quantity f(n) is O(n2) if there is some constant M

such that f(n)
n2 ≤ M . Roughly speaking, this says that f(n) grows “like” n2, up to some

fixed constant multiplier. This idea extends to O(n), O(log(n), and really O(anything).)
Another sort, which is undoubtedly much more awful than bubblesort, is bogosort,

which we define here:

Algorithm. Take as input some list L = (l1, . . . ln) of objects, along with some operation
≤ that can compare any two of these elements. Perform the following algorithm:

1. Check this list to see if it is already in order. (Formally: create some variable loc,
initialize it at 1, and go through the list comparing elements lloc, lloc+1. If there’s any
pair that are out of order, stop searching and declare the list out of order; otherwise,
continue until you’ve searched the whole list.)

2. If the list was in order, stop! You’re done.

3. Otherwise, the list is out of order. Randomly select a permutation of our list, and
reorder our list according to this permutation. Go to 1.

This algorithm is akin to sorting a deck of cards by repeatedly (a) checking if it’s in order,
(b) throwing it up in the air if it’s not, and returning to (a).

If L’s elements are all distinct, bogosort has an expected runtime of n!; there are n! many
ways to permute the elements of our list, while exactly one of them is the correct sorting
of L. Similarly, bogosort has a worst-case runtime of ∞; given any finite number of steps t,
it’s easily possible that our first t shuffles don’t accidentally sort our list.

We close with a third sort that (while as esoteric in some ways as bogosort) actually
has some nice properties and uses: beadsort!

5



Algorithm. Take as input some list L = (l1, . . . ln) of positive integers; as well, have on
hand m =

∑n
i=1 li many beads, and maxn

i=1 li many poles on which to place these beads.

1. Label our poles 1 . . .m.

2. For each element li in our list, place one bead on each of the poles 1, 2 . . . li.

3. Let gravity occur.

4. Starting from height n and working your way down, read off the number of beads at
that given height. Write down this number as lk.

This algorithm is perhaps best illustrated with a pair of pictures:

Setup:

Row n

...

Row 2

Row 1

Pole 1 Pole 2 Pole m...

2

3

3

4

1

Result:

Row n

...

Row 2

Row 1

Pole 1 Pole 2 Pole m...

2

3

3

4

1

The beautiful thing about this algorithm is that its runtime is (time to place beads on
poles) + (time for gravity) + (time to read beads). Gravity takes time roughly on the order
of
√
n, while the time to place beads on poles and read beads off of poles takes anywhere

between n and m, depending on how efficient you are at it. In many cases, this can be
much faster than n2, when implemented by people or specialized hardware!

6


