
Root-Finding Algorithms Instructor: Padraic Bartlett

How Mathematica Does It: Newton’s Method

Day 3 Mathcamp 2013

In our last two classes, we’ve constructed algorithms that can find all of the roots of
a given functions. From a pure, non-applied, setting, this is pretty satisfying: we had a
question (how do we find roots) and we created a foolproof algorithm (Sturm’s theorem)
that answers this completely.

However, in practice, this is only the beginning of the problem. Being able to find
the roots, while important, is of relatively little value if our algorithm doesn’t run quickly
enough to actually be of use! In our last lecture, we’re going to look at Newton’s method,
a root-finding technique that is how programs like Mathematica actually calculate roots.

1 A New Challenger Appears: Newton’s Method

The motivations for Newton’s method are twofold:

• In our two earlier root-finding algorithms, we needed to know the value of our function
at two points, and furthermore know that the signs of our function differed at those
two points. This is often not information we will have: i.e. for a function like x4 −
2x3 − 3x2 + 4x+ 4, there are roots (if you factor, it’s (x+ 1)2(x− 2)2) but in fact no
places where the function is actually negative! We want to get around this issue.

0

10

20

30

40

50

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

• On the other hand: we saw that with the false-position method, using the data
from multiple points on our curve can help us find an approximation more quickly.
Effectively, we used the data at two points to create a linear approximation to our
function, and used that to help us come up with better guesses for our roots. We
want to use this observation in later algorithms!

1

So: let’s suppose we’re not in a situation where we know what’s happening at two points:
i.e. we have some function f(x), and we’re trying to find a root of f(x) starting from just
some initial guess a. How can we do this?

Well: if we use our second observation, a natural thing to try is approximating f(x)
by a line near this point a. We can do this with the derivative, by finding a line with slope
f ′(a) through the point (a, f(a)):

f ′(a) · (x− a) + f(a) = y.

If this linear equation is a good approximation to our function, we might hope that a root
of this line is close — or at least closer – to a root of f(x) than our original guess a was. If
we solve for its root, we get

0 = f ′(a) · (x− a) + f(a)

⇒ x = a− f(a)

f ′(a)
,

provided that f ′(a) is nonzero. This value, hopefully, is a “better guess” at a root of f(x),
and iterating this process should lead us to a root of f(x) itself!

A potentially new issue with this method is that there’s no particularly clear reason why
this process will eventually converge on a given point. For example, consider performing
this process on the function f(x) = x4 + x3 − 2x2 − 1 starting at x = 0. The derivative of
this function, f ′(x), is 4x3 + 3x2 − 4x, which is 0 at x = 0. We can’t even start.

Something of a problem, yes. However, this isn’t such a big problem: if we just wiggle
our guesses a little bit, we’ll wind up with nonzero derivatives (as zeroes of derivative are
rather rare if the function we’re studying is a nonconstant polynomial, say.)

A larger problem, even if we can get the method started and don’t run into zero deriva-
tives, is that it still might not converge on a given value. Consider the function x3− 2x+ 2,
along with the starting point x = 0:

starting point a f ′(a) root of linear approx.

0 −2 0− 2
−2 = 1.

1 1 1− 1
1 = 0.

0 −2 0− 2
−2 = 1.

1 1 1− 1
1 = 0.

0 −2 0− 2
−2 = 1.

1 1 1− 1
1 = 0.

...
...

...

Not exactly useful. If we graph this function, we can get a visual idea for why this
pathological behavior happens:

2

-3

-2

-1

0

1

2

3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Any function with tangent lines that form the “criss-cross” pattern below, where the zeroes
of various tangent lines and the initial points of other tangent lines share the same x-
coördinate, will run into the same problem. More complicated sequences that eventually
repeat can be made using this idea.

So far, so bad. However, these problems shouldn’t make you give up all hope! Here’s
an example where the situation is somewhat rosier:

Example. Approximate a root to f(x) = x4 − 4x3 + 2x− 1, starting from x = −1.

Answer. First, we note that f ′(x) = 4x3−12x2 +2. If we apply Newton’s method starting
from x = −1, we get the following table of approximations:

starting point a f ′(a) root of linear approx.

−1 −14 (−1)− 2
−14 = −12

14 ≈ −.85714

−12
14 ≈ −9.33528

(
−12

14

)
− .34444
−9.33528 ≈ −.82025

−.82025 ≈ −8.28121 (−.82025)− .0196632
−8.28121 ≈ −.81788

−.81788 ≈ −8.21554 (−.81788)− 1.14591·10−4

−8.21554 ≈ −.81787
...

...
...

Further approximations are useless, as we’ve already — after just four runs of our algorithm!
— hit as many significant digits as we’re using in our calculations. By comparison, it would
have taken us 17 runs of the bisection method to have found an approximation as close as
this one to a root, assuming we started with an interval of length 1.

Hopefully this is motivation for why we should try to understand this method more:
while it’s not foolproof, it is ridiculously fast where it does work.

So: we really really want this to work. How can we insure this happens — or at least
know in what situations this method is viable?

3

2 Error Analysis

A more formal way of phrasing the question above is the following: take a polynomial
f(x), a starting point a0, and a root a of f(x) that we’re hoping that Newton’s method

will converge to. Let a1 denote a0 − f(a0)
f ′(a0)

, the result of iterating Newton’s method once
starting from a0; in general, let ak denote the result of iterating Newton’s method k times
starting from a0. We want to understand how the error

ek := a− ak

behaves as k grows large. In particular, we would like to come up with conditions on f(x)
that insure that ek converges to 0, and furthermore get an estimate of how quickly ek
converges to 0.

To start, we should attempt to describe an error ek+1 in terms of earlier errors ek,
because these errors (like the approximations ak themselves) are iterative in design:

ek+1 = a− ak+1

= a−
(
ak −

f(ak)

f ′(ak)

)
= (a− ak) +

f(ak)

f ′(ak)

= ek +
f(ak)

f ′(ak)
.

This tells us, somewhat, how to express how our errors are changing over time: we’re
adding f(ak)

f ′(ak)
at each step. But this isn’t necessarily very useful; we don’t really know what

this quantity is! We want to express f(ak)
f ′(ak)

in terms of these errors as well.

To do this, first expand1 our polynomial f(x) around the approximation ak: in other
words, find constants b0, . . . bn such that

f(x) = b0 + b1 · (x− ak) + b2 · (x− ak)2 + . . .+ bn · (x− ak)n.

Because a is a root of f(x), we know that f(a) = 0. On the other hand, though, if we
use our expansion, we have that

f(a) = b0 + b1 · (a− ak) + b2 · (a− ak)2 + . . .+ bn · (a− ak)n

= b0 + b1 · ek + b2 · e2k + . . . bn · enk .

What are these bi’s? Well: b0, in a sense, is what happens when we plug ak into our
polynomial, because

f(ak) = b0 + b1 · (ak − ak) + b2 · (ak − ak)2 + . . .+ bn · (ak − ak)n = b0.

1Typically, we write polynomials in the form
∑n

i=1 bix
i, for some constants bi. However, this is not the

only way to write a polynomial! For example, we can write x2 − 5x + 7 as (x− 2)2 + (x2) + 1. In general,
given any a, we can write a given polynomial in the form

∑n
i=1 ci(x− a)i, by picking appropriate constants.

If you haven’t seen how to do this, come find me and I’ll explain!

4

In other words, b0 = f(ak). Similarly, b1 is just what we get when we plug ak into the
derivative of our function, as

f ′(x) =
d

dx

(
b0 + b1 · (x− ak) + b2 · (x− ak)2 + . . .+ bn · (x− ak)n

)
= b1 ·

(
d

dx
(x− ak)

)
+ b2 ·

(
d

dx
(x− ak)2

)
+ . . .+ bn ·

(
d

dx
(x− ak)n

)
= b1 · · (1) + b2 · (2 (x− ak)) + . . .+ bn ·

(
n (x− ak)n−1

)
⇒ f ′(ak) = b1 · · (1) + b2 · (2 (ak − ak)) + . . .+ bn ·

(
n (ak − ak)n−1

)
= b1.

So f ′(ak) = b1. Via a similar process, you can show (and should if you’re skeptical!) that
f ′′(ak) = 2b2.

Why do we care? Well: we’ve now created an expression relating the error terms ek to
the function f(x) and its derivatives at ak! In particular, we’ve shown that

f(a) = b0 + b1 · ek + b2 · e2k + . . . bn · enk .

= f(ak) + f ′(ak) · ek +
f ′′(ak)

2
· e2k +O(e3k).

Here, O(e3k) is a way of collecting together all of the terms that have three or more
factors of ek in them. The idea is that if ek is something relatively small, then the terms
b3e

3
k, b4e

4
k, . . . will all be really really small as compared to the f(ak)+f ′(ak)·ek+2f ′′(ak)·e2k

factors, as they all contain additional multiples of ek, a very small thing! Often in the
manipulations below, we’ll wind up multiplying or dividing this quantity by constants.
When we do this, we won’t actually write these constants down by the O(e3k) term: i.e.
we’ll do things like write 2 ·O(e3k) = O(e3k). This is because

So: as we noted earlier, because a is a root of f(x), we have f(a) = 0. If we apply this
to the expression above, we have

0 = f(a) = f(ak) + f ′(ak) · ek + 2f ′′(ak) · e2k +O(e3k)

⇒ −f(ak) = f ′(ak) · ek + 2f ′′(ak) · e2k +O(e3k)

⇒ − f(ak)

f ′(ak)
= ek +

f ′′(ak)

2f ′(ak)
e2k +O(e3k).

If we plug this into our earlier expression ek+1 = ek + f(ak)
f ′(ak)

we get

5

ek+1 = ek +
f(ak)

f ′(ak)

= ek −
(
ek +

f ′′(ak)

2f ′(ak)
e2k +O(e3k)

)
= − f

′′(ak)

2f ′(ak)
e2k +O(e3k)

⇒ |ek+1| =
∣∣∣∣ f ′′(ak)

2f ′(ak)
e2k +O(e3k)

∣∣∣∣ .
So. Suppose for the moment that on the entire region we make guesses in, we satisfy

the following properties:

1. f ′(x) is bounded away from 0.

2. f ′′(x) is bounded away from infinity.

As a consequence of these first two properties, we can bound f ′′(ak)
2f ′(ak)

above by some constant
C on the interval we’re studying.

We also ask for the following two other properties:

3. Our starting point a0 is “close” to the root a. By “close,” we mean that a0 is suffi-
ciently close to a such that

(a) Our O(e30) terms are smaller than Ce20 term. This stops them from accidentally

“taking over” our polynomial, and insures that the 2f ′′(ak)
f ′(ak)

e2k term is the relevant
one to pay attention to.

(b) 2Ce0 < 1. This insures that our errors don’t increase when we iterate Newton’s
method.

If we use our third property, we can see that our initial guess a0 insures that the

quantity
∣∣∣−2f ′′(a0)

f ′(a0)
e20 +O(e30)

∣∣∣ is bounded above by 2C|e20|. Consequently, e1 ≤ 2Ce20 < e0.

As a result, e1 satisfies the two properties 3a, 3b as well; so by the same logic, we have
e2 ≤ 2Ce21. Induction tells us that this property holds for all ek: i.e.

ek+1 ≤ 2Ce2k.

This, by the way, is amazing. To get an idea of how amazing this is, think about how
quickly errors improved in the method of bisections. If our error was ek at one stage, the
error at the next stage was ek/2, because our algorithm runs by repeatedly subdividing
intervals. In a sense, this improvement is “linear” in terms of the total number of bits
gained: at each step, we gain precisely one binary bit of additional information on our root.

Newton’s method, by contrast, is “quadratic” in terms of the total number of bits gained.
If we have an estimate that’s accurate to within 10−5 of a root, running Newton just one
more time gives us an improvement of 2C · 10−5 on our original error margin! In other

6

words, up to the constant multiple on the outside, we’re effectively doubling the number
of bits of accuracy on our estimate with each step. That is ridiculous.

And we’ve discovered reasonable conditions to check for to insure this happens! If we
want to use Newton’s method on an interval to find a root, we just need to insure that the
following holds:

• f ′(x) is bounded away from 0 on our interval. If our root a is simple, i.e. (x− a)2 is
not a factor of f(x), this is easy to insure by simply taking a sufficiently close interval
around the root we’re looking for. This is because the derivative is nonzero near such
a root, as we repeatedly observed in our lecture yesterday! (If our root is not simple,
i.e. (x − a)2 is a factor of f(x), Newton’s method actually is pretty slow, and we’re
much better off with other methods.)

• f ′′(x) doesn’t blow up to infinity, which as long as we’re working with polynomials is
free.

• a0 is “close” to a, as described above: these are relatively easy conditions to check and
insure by simply shrinking our interval (with i.e. the method of bisections or Sturm’s
theorem) until they hold.

Now that we understand when Newton’s method is guaranteed to converge, we can
finally formalize it below:

Root-Finding Algorithm 4: Newton’s Method

Input: A continuous function f(x) and an error tolerance ε. As well, an interval [c, d] and
a guess a0 that satisfy the “niceness” conditions listed above. Let C be the constant
defined earlier, and request that d− c < 1

2C as well.

1. Let k be the current number of passes we’ve made using Newton’s method, and ek
be the error defined in our discussions above. Initially, we won’t know what the root
we’re converging to is, but we can bound it above by d − c, which we know is less
than 1

2C . Using the same iterated argument as before, we can still conclude that our
errors follow the ek+1 ≤ 2Ce2k property.

2. If ek < ε, halt: we have an approximation that’s within ε of a root.

3. Otherwise, set ak+1 = ak − f(ak)
f ′(ak)

, and return to step 2.

This, effectively, is how most modern root-finding programs actually find roots. Using
this in conjunction with Sturm’s theorem (to identify all the roots) and the bisection method
(to improve our guesses to the point where Newton takes over) is all you need to construct
fast, beautiful root-finding programs — with these three classes, you’re now capable of
(mostly) replicating the fastest algorithms we use today. Cool, right?

7

Root-Finding Algorithms Instructor: Padraic Bartlett

Homework 3: Newton’s Method

Day 3 Mathcamp 2013

Starred problems are harder.

1. Use Newton’s method to find a root of x6 − x3 + 4x− 1, starting at 1.

2. In class, we studied an example of Newton’s method where our process kept looping
between two values. (In particular, x3 − 2x + 2, starting at x = 0, kept bouncing
between x = 0 and x = 1.) Find a function f(x) and a starting point a such that
applying Newton’s method starting from a enters a loop between three values.

3. Find a function f(x) and a starting point a so that applying Newton’s method to f(x)
starting from a yields a sequence of approximations that diverges to infinity.

4. Is it possible to find a polynomial p(x) and starting point a so that applying Newton’s
method to p(x) starting at a yields a sequence of approximations that diverges to
infinity? Or must any such sequence be bounded?

5. Consider the following algorithm, the secant method, which is in some senses a
“discrete” form of Newton’s method:

Input: A continuous function f(x) and a pair of guesses a0, a1 for a root of f(x).

(a) To form a third guess a2, draw the line between (a0, f(a0)) and (a1, f(a1)). This

line has slope f(a1)−f(a0)
a1−a0 , and goes through the point (a1, f(a1)). Therefore, it

has the form

y =
f(a1)− f(a0)

a1 − a0
(x− a0) + f(a0).

(b) Solving for the root of this line tells us that our third guess, a2, is precisely

a2 := a1 − f(a1)
a1 − a0

f(a1)− f(a0)
.

(c) We now have a new third guess a2! Take a1 and a2, our most recent two guesses,
and repeat this process on them to generate another guess a3. Iterate to generate
a sequence ak of guesses.

Perform error analysis on this algorithm in a similar fashion to the one that we did
for Newton’s method. If a is the root that the sequence ak’s is hopefully converging
to, and ek = a−ak, show (with some assumptions about what “niceness” means) that

|ek+1| ≤ C|ek|ϕ. Note that ϕ, here, is the golden ratio 1+
√
5

2 .

8

	A New Challenger Appears: Newton's Method
	Error Analysis

