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In our last class, we proved that random walks on Z1 and Z2 are recurrent: i.e. given
enough time, a random walker on either graph will “eventually” return to the origin.

In today’s talk, we will study Zd, for all d ≥ 3! We start with d = 3, and prove the
following claim:

Theorem 1. The three-dimensional lattice graph Z3 is transient.

Proof. For Z2, the trick we used was to “short” a bunch of vertices together, and show
that the resulting graph (which was simpler, even though its resistances were “lower”)
was recurrent. Here, in Z3, we’re going to “cut” a number of resistors, and show that
the resulting (simpler, higher-resistance) graph is transitive! (The normal proof of this
theorem is much more difficult without these observations; it’s only with this “shorting”
and ”cutting” that we can pull this off with such relative ease1. )

In particular: lattices are hard to calculate resistances on. Let’s try something simpler
for a warm-up: a tree!

For example, let’s consider the infinite binary tree graph T2, where each edge has resis-
tance 1, and we perform the standard trick of grounding everything at some cutoff distance
r and put a potential of one volt at the root. Notice that (by symmetry) all of the nodes at
any fixed distance k from the origin have the same potential: therefore, we can short them
all together without changing the overall resistance of our circuit.

By using our earlier observations on resistors in parallel, we get that the above circuit is
equivalent to the circuit below:

This has resistance
∑

1/2n = 1.
Naively, we might hope that we can just find a copy of T2 in Z3, and be done with our

argument. However, the number of nodes at distance n from the root of T2 is 2n, while the

1Insert your own “short-cut” pun here.
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number of nodes that are distance ≤ n from the origin in Z3 is O(n2): so we’re not going
to be able to nicely fit a binary tree in Z3! What will we do?

Answer: we will be clever. Specifically, let’s stay with the tree structure. Binary,
however, may have been overkill: perhaps the sum

∑
1/2n converges far faster than we

need! Instead, we could aim for a tree who splits often enough that we’ll get *some* sort
of convergent thing at the end of the day, but not so fast that we can’t fit it in Z3. (This
seems like a plausible goal: things like the sum

∑ 1
n2 converge, so we certainly don’t need

as much branching as the binary tree T2.)
To do this, consider the following kind of“tree:”

As currently drawn: not a tree. However, if you pretend that each of the green nodes are
“doubled”, by creating two vertices at each of those locations and passing only one branch
through each node, it’s a tree! Suppose for the moment that this picture is not lying to
you: that the only overlapping parts of this tree are at the green vertices, and no branches
or other such things overlap. Then, because the green nodes are at the same distances from
the origin in the tree version of this graph, we know that they have the same voltage passing
through them by symmetry — so there is no difference between the voltage/resistance/etc
of the “tree” as drawn in our picture and the tree as realized by splitting the green nodes!

To give an explicit construction for the above picture: this tree is constructed by taking
the positive octant of Z3 and starting from the origin. At the origin and each vertex with
distance

∑r
n=1 2n for every r ≥ 1 (i.e. at the blue nodes,) our tree “branches” and creates

three paths from these blue nodes: one branch that continues infinitely in the positive-x
direction from that blue vertex, one that continues infinitely in the positive-y direction from
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that blue vertex, and one that continues infinitely in the positive-z direction from that blue
vertex.

Notice that our tree only intersects at the “green” vertices in this picture, and specifically
that these green vertices never coincide with one of these “blue” vertices. This is not hard to
see: suppose that two tree branches managed to overlap at a blue vertex v that is distance∑r

n=1 2n from the origin. Then there must be two distinct blue vertices w1, w2 that we
traveled from on distinct paths of length 2r to get to v, both of which are distance

∑r−1
n=1 2n

from the origin. But this cannot happen: if we look at our two distinct paths of length 2r,
they are forming two sides of a square with side length 2r in Z3 with v as one of its corners.
Because the sum

∑r−1
n=1 2n = 2r − 2 < 2r, it is impossible for the two points w1, w2 to be

distance
∑r−1

n=1 2n from the origin and also be the two corners opposite v in this square.
Therefore our tree as drawn in R3 only overlaps at nodes that are not blue nodes, and

therefore in particular only overlaps at vertices (i.e. it does not overlap on edges.) So, if we
split it at each of these green nodes, we get an actual tree; moreover, because these vertices
in the split tree all have the same voltages by symmetry, we can (again) see that there is
no difference between the voltage/resistance/etc of the “tree” as drawn in our picture and
the tree as realized by splitting the green nodes.

By identifying nodes of distance
∑r

n=1 2n for every n from the origin, the graph on this
tree restricted to the distances

∑r
n=1 2n is equivalent to a circuit of the form

By applying our known results about resistors in series and parallel, we can see that the
total resistance between any two nodes n− 1, n in the above circuit is

2n

3n
.

Therefore, our tree at stage R has total resistance

r∑
n=1

2n

3n
=

1− (2/3)r+1

1− (2/3)
− 1.

As r goes to infinity, this goes to 2; therefore, the current iA = v(A)/Reff = 1/2 at infinity

is positive, and consequently the value pesc = iA/CA = 1/2
3 = 1/6 is positive and nonzero.

Therefore, by our earlier discussion, there is a nonzero chance of escape! In other words,
our random walker may never return to the origin (and in fact, we’ve shown that they have
at least a 1/6-th chance to do so!)

This gives us the following corollary, which is an excellent note to end our lecture on:
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Corollary 2. A lost drunkard will come home if and only if it cannot fly.
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1. In class, we proved that pesc on Z3 was at least 1/6. The actual value of pesc is
actually ∼ .63. By either finding a different tree, or somehow being clever in another
way, improve the bound we came up with in class: show that pesc ≥ 1/3.

2. Show that pesc on Z4 is at least 1/2. Find bounds on pesc for Zd, for all d. As d goes
to infinity, does pesc converge to 1?

3. (This problem assumes that you know some group theory.) Given a group A, the
Cayley graph corresponding to A is defined as follows:

Definition. Take any group A along with a generating set2 element S. We define
the Cayley graph GA,S associated to A as the following directed graph:

• Vertices: the vertices of GA are precisely the elements of A.

• Edges: for two vertices x, y, create the oriented edge (x, y) if and only if there is
some generator s ∈ S such that x · s = y. If this happens, we decorate the edge
(x, y) with this generator s, so that we can keep track of how we have formed
our connections.

(a) Find a Cayley graph such that a random walker on that Cayley graph starting
at the identity has a nontrivial chance of never returning to the identity. (Our
walker ignores directions on edges.)

(b) Find another Cayley graph, on infinitely many vertices, such that a random
walker starting at the identity will eventually return to the identity with proba-
bility 1.

(c) Take any group G that can be generated by a finite set of elements. Suppose
that there is some finite set S of generators such that on the Cayley graph given
by G and S, a random walker starting at the identity will eventually return to
the identity. Show that under any finite set S of generators, a random walker
starting at the identity will eventually return to the identity.

2A generating set for a group A is simply some collection S of elements of A, such that we can create
any element of A by combining elements from our generating set and/or taking inverses. For example, the
integers have {1} as one possible generating set; however, {2, 3} is another valid generating set, as is {1, 2, 3}
(redundancy is OK!)

4


