
Mathcamp Crash Course Instructor: Padraic Bartlett

Lecture 2: Techniques

Week 1 Mathcamp 2014

1 The Technique of Proof

In our first lecture, we discussed what it means to prove a statement in mathematics. Specif-
ically, we talked not just about what it means for a mathematical statement to be a proof,
but what it means for a mathematical statement to be a good proof; i.e. mathematically
we wanted our proofs to not just be logically consistent and made of true statements, but we
also wanted our proofs to be illuminating and to teach us something about the statements
we’re studying.

In this talk and tomorrow’s talk, we’re going to discuss some frequently-used techniques
people use when creating proofs! We start with the concept of “proof by contradiction:”

1.1 Proofs by Contradiction

The best way to illustrate the idea behind a proof by contradiction is to consider an example.

Theorem. There are two irrational numbers a and b such that ab is rational.

Proof. So: if we wanted to directly prove that such a pair of numbers existed, we would need
to actually concretely exhibit a pair of irrational numbers a, b such that ab was rational. The
difficulty with this approach, frustratingly, is that we don’t really know of many irrational
numbers at this point in time! In our class yesterday, we proved that the 3

√
2 was irrational,

and in the HW you may have proved that
√

2 is irrational. However, we really don’t have
many other examples! As well, we don’t really have any techniques for actually calculating
what ab is, for non-rational values of a, b; therefore, this direct approach seems difficult.

Instead, consider the following way to “side-step” these difficulties: instead of attempting
to explicitly find such a pair of numbers a, b, we can instead prove that it is impossible for
our claim to fail: i.e. that it cannot be possible that for every pair of irrational numbers a, b,
ab is also irrational. At first, this seems like a colossal misstep; we’ve turned a search for
one pair of irrational numbers into a claim made about every pair of irrational numbers.
However, suppose we look at our situation this way:

1. We have a claim we’re trying to prove is true; let’s denote it P , for shorthand.

2. Instead of proving P is true directly, we want to prove that ¬P is impossible (i.e.
false.)

3. To do this, we can simply do the following:

(a) Assume, for the moment, that ¬P is actually true!
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(b) Working from this assumption, find a pair of contradictory statements that are
implied by ¬P ; i.e. a pair of statements Q,¬Q such that P ⇒ Q and P ⇒ ¬Q.
Common examples are Q = “1 = 0”, or Q(n) = “n is even” or other such things.

(c) This proof demonstrates that ¬P must be impossible, because it implies two
contradictory things (like the two simultaneous claims Q(n) = “n is even” and
¬Q(n) = “n is odd.”) Mathematics is free from contradictions by design1; there-
fore, we know that this must be impossible, i.e. that ¬P must be false, i.e. that
P must be true!

In general, this is how a proof by contradiction works;2 take your claim P and assume
it’s false. Then, try to use ¬P to deduce a pair of contradictory statements, which you
know mathematics cannot contain; from this, you can conclude that our initial assumption
(that ¬P was true) must have been mistaken, and therefore that P must be true!

In the example we’re studying here, we want to show that it’s impossible for ab to be
irrational for every pair of irrational numbers a, b. To do this via a proof by contradiction,
we do the following: first, assume that ab is irrational for every pair of irrational numbers
a, b. 8If we apply this knowledge to one of the few numbers (

√
2) we know is irrational, our

assumption tells us that in specific

√
2
√
2

is irrational.

What do we do from here? Well: pretty much the only thing we have is our assumption,

our knowledge that
√

2 is irrational, and our new belief that
√

2
√
2

is also irrational. The

only thing really left to do, then, is to let a =
√

2
√
2
, b =

√
2, and apply our hypothesis again.

But this is excellent! On one hand, our we have that ab is irrational by our hypothesis. On
the other hand, we have that ab is equal to(√

2

√
2
)√2

=
√

2

√
2·
√
2

=
√

2
2

= 2,

which is clearly rational. This is a contradiction! Therefore, we know that our hypothesis
must be false: there must be a pair of irrational numbers a, b such that ab is rational.

An interesting quirk of the above proof is that it didn’t actually give us a pair of irrational
numbers a, b such that ab is rational! It simply told us that either

•
√

2
√
2

is rational, in which case a = b =
√

2 is an example, or

•
√

2
√
2

irrational, in which case a =
√

2
√
2
, b =

√
2 is an example,

but it never actually tells us which pair satisfies our claim! This is a weird property of proofs
by contradiction: they are often nonconstructive proofs, in that they will tell you that a
statement is true or false without necessarily giving you an example that demonstrates the
truth of that statement.

1This is why we tried to insure that we only start with true statements in our proofs.
2A beautiful quote about proofs by contradiction, by the mathematician G. H. Hardy: “[Proof by con-

tradiction], which Euclid loved so much, is one of a mathematician’s finest weapons. It is a far finer gambit
than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician
offers the game.”
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1.2 Proofs by Contrapositive

The structure of a proof by contrapositive is remarkably simple: suppose we want to prove
some statement of the form P ⇒ Q. Sometimes, this kind of a statement can be rather
tricky to prove: perhaps P is a really tricky condition to start from, and we would prefer
to start working from the other end of this implication. How can we do this?

Via the contrapositive! Specifically, if we have a statement of the form P =⇒ Q, the
contrapositive of this statement is simply the statement

¬Q⇒ ¬P .

The nice thing about the contrapositive of any statement is that it’s exactly the
same as the original statement! For example, if our statement was “all Mathcampers
are not soluble in water,” the contrapositive of our claim would be the statement “anything
that is soluble in water is not a Mathcamper.” These two statements clearly express the
same meaning – one just starts out by talking about Mathcampers, while the other starts
out by talking about things that you can dissolve in water. So, if we want to prove a
statement P =⇒ Q, we can always just prove the contrapositive ¬Q ⇒ ¬P instead,
because they’re the same thing! This can allow us to switch from relatively difficult starting
points (situations where P is hard to work with) to easier ones (situations where ¬Q is
easy to work with.) In particular, in the example above, working with the statement “all
Mathcampers are soluble in water” will make a brute-force proof much easier: it is far easier
to drop every Mathcamper in a lake than to check every soluble object to see if it’s been to
Mathcamp recently.

To illustrate this, consider the following example:

Theorem. Let n be a natural number. Then, if n ≡ 2 mod 3, n is not a square: in other
words, we cannot find any integer k such that k2 = n. ( We write that a ≡ b mod c iff
a− b is a multiple of c: in other words, that a and b are the “same” up to some number of
copies of c.)

Proof. A direct approach to this problem looks . . . hard. Basically, if we were to prove this
problem directly, we would take any n ≡ 2 mod 3 – i.e. any n of the form 3m+ 2, for some
integer m – and try to show that this can never be a square. Basically, we’d be looking at
the equation k2 = 3m + 2 and trying to show that there are no solutions to this equation,
which just looks kind of. . . ugly, right?

So: because we are mathematicians, we are lazy. In particular, when presented with
a tricky-looking problem, our instincts should be to try to make it trivial: in other words,
to attempt different proof methods and ideas until one seems to “fit” our question. In this
case, as suggested by our section title, let’s attempt to prove our theorem by studying its
contrapositive:

If n is a square, then n 6≡ 2 mod 3.

Equivalently, because every number is equivalent to either 0, 1, or 2 mod 3, we’re trying to
prove the following:

If n is a square, then n ≡ 0 or 1 mod 3.
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This is now a much easier claim! – the initial condition is really easy to work with, and the
later condition is rather easy to check.

Now that we have some confidence in our ability to prove our theorem, we proceed with
the actual work: take any square n, and express it as k2, for some natural number k. We
can break k into three cases:

1. k ≡ 0 mod 3. In this case, we have that k ≡ 3m for some m, which means that
k2 = 9m2 = 3(3m2) is also a multiple of 3. Thus, k2 ≡ 0 mod 3.

2. k ≡ 1 mod 3. In this case, we have that k ≡ 3m + 1 for some m, which means that
k2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1. Thus, k2 ≡ 1 mod 3.

3. k ≡ 2 mod 3. In this case, we have that k ≡ 3m + 2 for some m, which means that
k2 = 9m2 + 12m + 4 = 3(3m2 + 4m + 1) + 1. Thus, k2 ≡ 1 mod 3.

Therefore, we’ve shown that k2 isn’t congruent to 2 mod 3, for any k. So we’ve proven our
claim!

1.3 Proofs by Induction

Sometimes, in mathematics, we will want to prove the truth of some statement P (n) that
depends on some variable n. For example:

• P (n) = “The sum of the first n natural numbers is n(n+1)
2 .”

• P (n) = “If q ≥ 2, we have n ≤ qn.

• P (n) = “Every polynomial of degree n has at most n roots.”

For any fixed n, we can usually use our previously-established methods to prove the
truth or falsity of the statement. However, sometimes we will want to prove that one of
these statements holds for every value n ∈ N. How can we do this?

One method for proving such claims for every n ∈ N is the method of mathematical
induction! Proofs by induction are somewhat more complicated than the previous two
methods. We sketch their structure below:

• To start, we take our claim P (n), that we want to prove holds for every n ∈ N.

• The first step in our proof is the base step:in this step, we explicitly prove that the
statement P (1) holds, using normal proof methods.

• With this done, we move to the induction step of our proof: here, we prove the
statement P (n) =⇒ P (n + 1), for every n ∈ N. This is an implication; we will
usually prove it directly by assuming that P (n) holds and using this to conclude that
P (n + 1) holds.

Once we’ve done these two steps, the principle of induction says that we’ve actually proven
our claim for all n ∈ N! The rigorous reason for this is the well-ordering principle,
which we discussed in class; however, there are perhaps more intuitive ways to think about
induction as well.
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The way I usually think of inductive proofs is to think of toppling dominoes. Specifically,
think of each of your P (n) propositions as individual dominoes – one labeled P (1), one
labeled P (2), one labeled P (3), and so on/so forth. With our inductive step, we are insuring
that all of our dominoes are lined up – in other words, that if one of them is true, that
it will “knock over” whichever one comes after it and force it to be true as well! Then,
we can think of the base step as “knocking over” the first domino; once we do that, the
inductive step makes it so that all of the later dominoes also have to fall, and therefore that
our proposition must be true for all n (because all the dominoes fell!)

To illustrate how these kinds of proofs go, here’s an example:

Claim 1. For any n ∈ N, take a 2n × 2n grid of unit squares, and remove one square from

somewhere in your grid. The resulting grid can be tiled by - shapes.

Proof. As suggested by the section title, we proceed by induction.
Base case: for n = 1, we simply have a 2× 2 grid with one square punched out. As this

*is* one of our three-square shapes, we are trivially done here.
Inductive step: Assume that we can do this for a 2k × 2k-grid without a square, for any

k ≤ n. We then want to prove that we can do this for a 2n+1 × 2n+1 grid minus a square.
So: take any such grid, and divide it along the dashed indicated lines into four 2n × 2n

grids. By rotating our grid, make it so that the one missing square is in the upper-right
hand corner, as shown below:

Take this grid, and carefully place down one thre-square shape as depicted in the picture
below:
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Now, look at each of the four 2n × 2n squares in the above picture. They all are missing
exactly one square: the upper-right hand one because of our original setup, and the other
three because of our placed three-square-shape. Thus, by our inductive hypothesis, we know
that all of these squares can also be tiled! Doing so then gives us a tiling of the whole shape;
so we’ve created a tiling of the 2n+1 × 2n+1 grid!

As this completes our inductive step, we are thus done with our proof by induction.

The above question – one where you are in some sense “growing” or “extending” a result
on smaller values of n to get to larger values of n – is precisely the kind of question that
induction is set up to solve. The following problem about the Fibonacci numbers is another
such “extending” problem:

Definition. The n-th Fibonacci number is defined recursively as follows:

• f0 = 0.

• f1 = 1.

• fn = fn−2 + fn−1.

Examples. Here is the start of the Fibonacci number sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Claim 2. The n-th Fibonacci number is even iff n is a multiple of 3.

Proof. As noted above, the “recursive” construction of the Fibonacci numbers, where it
looks like we’re building our numbers out of earlier-defined numbers, suggests induction.

So: let’s try! Our base case for a number of immediate cases is trivially true: we can
check by hand that f0 = 0, f1 = 1, and f2 = 1.

So: inductively, suppose we know that fn is even if and only if n is a multiple of 3. Does
this help us with fn+1?

The answer is . . . no, not really. Because

fn+1 = fn + fn−1,

we really need more information than just fn: we also need to know whether fn−1 is even or
odd! Our normal induction isn’t strong enough here; we need something. . . stronger. Like
. . . strong induction!

Strong induction proceeds very similarly to normal induction:

• To start, we take our claim P (n), that we want to prove holds for every n ∈ N.

• The first step in our proof is the base step:in this step, we explicitly prove that the
statement P (1) holds, using normal proof methods.

• With this done, we move to the induction step of our proof. For strong induction,
we prove the statement that the combined statements P (1) ∧ P (2) ∧ . . . P (n) implies
P (n + 1). If you go back to our domino analogy, this is like asking whether knowing
that every domino from 1 to n falling over tells you that the n + 1-th domino falls
over.
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So: if we’re using strong induction, then we’re allowed to assume that our inductive
hypothesis holds for every value between 0 and n, and prove that it holds for n + 1. We
know that

fn+1 = fn + fn−1;

so, it suffices to consider the three possible cases for n + 1. Either n + 1 is a multiple of
3, in which case we can write it as 3k, or it is 1 mod 3, in which case it can be written as
3k + 1, or it’s 2 mod 3, in which case we can write it as 3k + 2. In any case, we can use our
inductive hypothesis to see that

f3k = f3k−1 + f3k−2 = odd + odd = even,

f3k+1 = f3k + f3k−1 = even + odd = odd,

f3k+2 = f3k+1 + f3k = odd + even = odd,

and thus that our property holds in any of these three cases. Thus, by induction, we know
that fn is even if and only if it is a multiple of 3.

1.4 Proofs of Equivalence

This proof technique comes up when we’re trying to prove two statements are equivalent.
For example, suppose that we have the following two statements:

• P (x, y) = “(x + 1)2 = (y + 1)2.”

• Q(x, y) = “x + y = −2,’ or x = y.’

As it turns out, these two statements are equivalent: i.e. P (x, y) ⇔ Q(x, y). How can we
prove this? Well, one useful blueprint for such a proof is the following:

• First, show that P (x, y) ⇒ Q(x, y): i.e. that if we assume P (x, y) is true, then we
can conclude that Q(x, y) is also true.

• Then, show the opposite direction: that Q(x, y) ⇒ P (x, y)! I.e. we will assume that
P (x, y) is true, and attempt to prove that Q(x, y) is also true.

If we have done this, we will have proven that P (x, y) is true if and only if Q(x, y) is
also true: i.e. that P (x, y) ⇔ Q(x, y)! Excellent. Now, let’s actually do this for these two
statements, to illustrate how such a proof works:

P (x, y) ⇒ Q(x, y): Assume that P (x, y) holds: i.e. that (x + 1)2 = (y + 1)2. Then, by
taking square roots of both sides, we have that

(x + 1) = ±(y + 1),

where the ± is because there are two possible square roots for any positive number, either
its positive square root or that same positive square root times (−1). So: if

(x + 1) = +(y + 1),
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then subtracting 1 from both sides gives us x = y, which is one possible way to make Q(x, y)
true. Otherwise, if

(x + 1) = −(y + 1),

we can add y to both sides and subtract 1 from both sides to get x + y = −2, which is
another way to make Q(x, y) true. Therefore, in either case, if P (x, y) is true, so is Q(x, y)!

Q(x, y)⇒ P (x, y): There are two different ways to make Q(x, y) true: either set x = y
or set x + y = −2, i.e. x + 1 = −(y + 1). In either case, we have that (x + 1)2 = (y + 1)2,
so we know that P (x, y) is true.

Therefore, we’ve shown that P (x, y)⇔ Q(x, y).
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