
Dynamical Systems Instructor: Padraic Bartlett

Lecture 3: The Alternating Points Lemma

Week 3 Mathcamp 2014

We ended last class with our statement of the following theorem:

Lemma. (Alternating Points Lemma.) Suppose that f is a continuous function on some
interval I with the following two properties:

• There is some n such that f has a point, x0, of period 2n` 1.

• For all 1 ď m ă n, f has no points of period 2m` 1.

Then the orbit of x0 must look like one of the following:

x1 x5x4x6 x7x3x2 x0

x1 x5x4x6 x7x3x2 x0
In other words: if we define xi “ f ipx0q, we have either

x2n ă x2n´2 ă . . . ă x4 ă x2 ăx0 ă x1 ă x3 ă . . . ă x2n´1, or

x2n´1 ă x2n´3 ă . . . ă x3 ă x1 ăx0 ă x2 ă x4 ă . . . ă x2n.

In the following section, we recap the motivation and notation we introduced in our last
talk as well; from there, we move to the actual proof of our claim!

Proof. To make our notation easier, reorder the 2n ` 1 points in the orbit of x0 as the
sequence

z1 ă z2 ă . . . ă z2n ă z2n`1.

Let’s look at what we’re trying to prove. In both of the pictures that we’re trying to
prove must hold, we have this sort of “spiraling-out” relation, where
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• an initially small interval rx0, x1s becomes after one application of f the slightly larger
interval rx2, x1s,

• which after another application of f becomes the larger interval rx2, x4s,

• which after yet another application of f becomes the larger interval rx3, x4s,

• . . .

• which at our last stage becomes our entire collection of points!

Furthermore, this “spiraling-out” relation pretty much enforces the structure we’re claiming
must exist! Namely, suppose there is some seed interval rzm, zm`1s such that the following
holds:

• Repeatedly applying f to this interval expands it by precisely one zi at each applica-
tion.

• The “side” this new zi shows up on alternates from the farthest-left to the farthest-
right.

Then, we have the structure we want! (Sketch out anything satisfying the two properties
above to see why this is sufficient.) This suggests that if we want to prove our claim, we
should attempt to look for this sort of interval structure in our zi’s.

We start by introducing some notation. For any k, l, let Skl denote the set

Skl “ tzi : k ď i ď lu.

Moreover: given any such Skl, if minzPSkl
fpzq “ zi,maxzPSkl

fpzq “ zj ,, we define

fpSklq “ Sij .

This is a convenient definition that will save us a lot of work in the coming pages.
With this notation established, let’s start our proof. First, we want to find an appropri-

ate “seed” interval tzm, zm`1u. Notice that in our pictures, this seed interval starts at the
largest value of m such that fpzmq ą zm. We know some such m exists, because fpz1q ą z1;
moreover, we know that m ď 2n, because fpz2n`1q ă z2n`1.

Now, let’s look at what happens when this “seed” interval unfolds. Formally: define
the sets Ski,li , which for shorthand we’ll just refer to as Si’s, as follows: initialize S1 “

tzm, zm`1u, and if Si exists and is not S1,2n`1, define Si`1 “ fpSiq. This gives us a sequence
of sets corresponding to repeated applications of f : we now want to show that they have
the structure we described above!

First off, notice that for any i, Si`1 Ľ Si. That these are not equal to each other is
because the points zi all correspond to an orbit of length 2n ` 1, and in particular if we
apply f to any proper subset of these zi’s we should not be able to remain in that proper
subset (as otherwise our orbit would be smaller than 2n ` 1!) That they are contained
within each other is a straightforward induction proof:

Base case: To see that S2 “ fpS1q “ fptzm, zm`1uq contains tzm, zm`1u, observe that that by
construction, fpzmq ě zm`1, while fpzm`1q ď zm. Therefore the interval correspond-
ing to S2 must contain both zm and zm`1, as claimed.
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Inductive step: Suppose that Si “ fpSi´1q Ą Si´1. Then simply notice that

Si`1 “ fpSiq Ą fpSi´1q “ Si,

and thus that our inductive claim is proven.

We have constructed a sequence of intervals Si “ f i´1pS1q that “expand” from some
base interval S1 until they cover everything, and grow by at least one element on each
application of f . Let St be the last interval we get in this process: note that St “ S1,2n`1,
our whole orbit.

We now want to show that this sequence grows by exactly one element on each ap-
plication of f : or in other words, that our sequence S1, . . . St has precisely 2n terms (i.e.
t “ 2n.) We prove this claim by contradiction: suppose not, that t ă 2n. We will use this
observation to create a point with odd period less than 2n ` 1, which will contradict our
earlier claim!

To do this, form the following sequence of intervals: for each Si, form the corresponding
closed interval Ii that you get by taking all of the elements bounded between elements of
Si. Formally:

Ii “ tx : there are za, zb P Si such that za ď x ď zbu.

Define the following sequence of intervals: let

• J0, J1, . . . J2n´t´1 “ I1,

• J2n´t “ I2,

• J2n´t`1 “ I3,

• . . .

• J2n´2 “ It.

Notice that this sequence exists, is well-defined, and contains all of our intervals iff t ă 2n.
Also notice that we’ve proven above that

J0 Ñ J1 Ñ J2 Ñ . . . J2n´2,

and because It “ rz1, z2n`1s, we trivially have J2n´2 Ñ J0.
We want to use the itinerary lemma to create a periodic point with period 2n ´ 1 via

this sequence of 2n´1 intervals! What we have here does. . . almost that. We definitely have
the conditions needed to apply the itinerary lemma — we have f continuous and Ji Ñ Ji`1
for all i P t0, . . . 2n ´ 2u (where we assume that we wrap around at i “ 2n ´ 2 ), which is
all we need to have to apply our lemma.

However, to get that our lemma will give us a point with period 2n´1, we also need that
our point doesn’t come up anywhere earlier in our sequence! This is not something that our
current set of intervals does for us. In particular, our last interval J2n´2 “ It “ rz1, z2n`1s is
our entire space — this is going to stop us from being able to form the kinds of contradictions
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we could make in our “period three implies chaos” proof,” like where we deduced that a
point being in rx0, x1s and rx1, x2s created problems for us.

So: we want a better It. Namely, a smaller It, that will still have the properties we
want (It´1 Ñ It Ñ I0) but also create issues when we try to have points in both I0 and It.

The smallest set we could hope for is one, say, of the form rzl, zl`1s, for some value of l.
Can we find such a set?

Conveniently, we can! To see why, consider the two sets tz1, . . . , zmu and tzm`1, . . . , z2n`1u.
These two sets have different sizes; without loss of generality, assume for the moment that
m ą 2n` 1´m (the other case is handled in an identical fashion.) We know that, on one
hand, there are some elements zi P tz1, . . . zmu such that fpziq R tz1, . . . zmu; for example,
fpzmq ą zm, by definition!

On the other hand, because m ą 2n`1´m, not every element of tz1, . . . zmu gets sent
to tzm`1, . . . z2n`1u. Consequently, there must be some value l such that fpzlq P tz1, . . . zmu,
and fpzl`1q P tzm`1, . . . z2n`1u. In other words, fpSl,l`1q contains rzm, zm`1s “ I0.

Using this discovery, let’s redefine our stopping value t and our sequence S1, S2, S3 ldots
as follows: let t´1 denote the smallest value of i such that Si Ñ Sl,l`1 holds. Such a value of
t must exist, because the Si’s grow by at least one zj at each step, and thus eventually span
all of the periodic points in our interval (and in particular will eventually contain Sl,l`1.)
Change St so that St “ Sl,l`1 “ tzl, zl`1u. Finally, update the Ji’s accordingly given our
new values of t, St.

Notice that we still have

J0 Ñ J1 Ñ J2 Ñ . . .Ñ J2n´2 Ñ J0,

as before. Therefore, we still have a sequence that we can apply the itinerary lemma to!
Do so, and get a value y such that

• fkpyq P Jk, for all 0 ď k ď 2n´ 2.

• f2n´1pyq “ y.

We know that y cannot be a point of period 2n ´ 1, because (by definition) our function
has no points of odd period smaller than 2n ´ 1. Consequently, there must be some value
of k such that fkpyq “ y, for k ă 2n´ 1.

But this means, in particular, that

f2n´2pyq “ f2n´2´kpyq,

and thus that whatever value this is lies in the intersection of J2n´2 “ It and J2n´2´k “ It´k.
But is this possible?

Well: recall that we defined St´1 to be the first set such that fpSt´1q Ą Sl,l`1. In
particular, because all of the Si’s are nested (as proven earlier,) this means that for any
1 ď i ď t´ 1, Si does not properly contain Sl,l`1!

Therefore, the intersection of Sl,l`1 and any Si for 1 ď i ď t ´ 1 must contain at most
one point; in particular, one of the endpoints of Sl,l`1. Consequently, because the intervals
J2n´2, J2n´2´k consist simply of the values between these endpoints, we know that the
intersection of J2n´2 and J2n´2´k must consist of at most one point, which is one of our
zi’s.
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In particular, this means that there is some i such that

f2n´2pyq “ f2n´2´kpyq “ zi.

But this implies that f2n´1pziq “ zi, because it is a point on an orbit of some length
dividing 2n ´ 1. This contradicts the fact that the zi’s correspond to an orbit of length
2n` 1. Therefore our original assumption, that t ă 2n, must have been flawed!

So we have that there are 2n sets S1, . . . S2n, each contained within the other, and each
precisely one larger than the other. All we need now, then, is the “alternating” condition
that we claimed from before: i.e. each time we expand from Si to Si`1, the new point we
add is always an endpoint of the corresponding Ii`1, occurs on the opposite side from the
second-most-recently added point,

This is not hard to see. First, notice that it holds when we go from S1 to S2: because
fpzmq ą zm, fpzm`1q ă zm`1, we are always in one of the following two cases:x1x2 x0 x1 x2x0

Showing that it holds when we go from S2 to S3 is a similar edge case / part of the
homework. Essentially, you should show that any situation like the following is impossible
for our function f : x0 x1x2x3

x0x1 x2 x3
Assuming that you have done this, we are left with just the task of analyzing the

transition from Si to Si`1, for i ě 3. Suppose for contradiction that our proof fails here,
but has held up until this point. In this situation, if Ai denotes the unique element in
SizSi´1, we must be in one of the following two pictures:

Ak-3 Ak-2Ak-1 Ak Ak+1
Ak-3Ak-2 Ak-1AkAk+1
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Notice that in either of these pictures, we have

ü rAk´2, Aks Ô rAk´1, Ak´3s,

and thus can apply the itinerary lemma to deduce the existence of a point of period 3,
which gives us a contradiction to our claim that we did not have points of odd order less
than 2n` 1.

This then concludes our proof! We have created a sequence of nested intervals S1, . . . S2n

that grow by one at each step, such that the new elements Ai added to each interval always
occur on the furthest-left and furthest-right of these Si’s, in alternating order.
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