
Math 137B Professor: Padraic Bartlett

Lecture 5: Planar and Nonplanar Graphs

Week 7 UCSB 2014

(Relevant source material: Chapter 6 of Douglas West’s Introduction to Graph Theory;
Section V.3 of Béla Bollobás’s Modern Graph Theory; various other sources.)

In last week’s class, we proved that the graphs K5 and K3,3 were nonplanar: i.e. that
there was no way to draw these graphs in the plane without having some of their edges
cross. In this week’s lectures, we are proving that those two graphs, in a sense, are the only
obstructions that can stop a graph from being planar!

We formalize this here with the following two definitions:

Definition. We say that a graph G is a subdivision of a graph H if we can create H by
starting with G, and repeatedly replacing edges in G with paths of length n. We illustrate
this process here:

Definition. A graph is called Kuratowski if it is a subdivision of either K5 or K3,3.

We know that a graph cannot be planar if it contains a Kuratowski subgraph, as those
subgraphs are nonplanar. As stated above, our goal is to prove that these necessary condi-
tions are also sufficient:

Theorem. (Kuratowski’s theorem) A graph is planar if and only if it does not contain a
Kuratowski graph as a subgraph.

To perform a proof of this kind — characterizing all graphs with a given property as
having some special kind of substructure — a natural first step is to simply start exploring
what nonplanarity looks like in general. What kinds of graphs are nonplanar? What kinds
of properties are easy to observe about nonplanar graphs?

We start this exploration here. To simplify matters somewhat, we are going to work
with the following definition when considering nonplanar graphs:

Definition. We say that a graph G is minimally nonplanar if G is nonplanar, but any
proper subgraph of G is planar.

The idea here is that minimality makes our lives a lot easier (as it did when we were
working with graph colorings and several other properties), as it allows us to deduce certain
properties about all of the subgraphs of our given graph! At the same time, we don’t “lose”
any generality by working with minimally nonplanar graphs; because the result we are
trying to prove is one about certain subgraphs that all nonplanar graphs have, it suffices to
simply show that all minimally nonplanar graphs have those subgraphs, as every nonplanar
graph has a minimally nonplanar subgraph (find the smallest nonplanar subgraph!)

We make our first observation about such graphs here:
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Proposition. Any minimally nonplanar graph G is at least 2-connected1.

Proof. This is a fairly short and elegant proof by contradiction. Assume not; i.e. that G
is ≤ 1-connected, and in particular that there is some vertex x that we can delete from G
that breaks G into multiple components, each one of which is disconnected from the others.
Call these components G′

1, . . . G
′
n, and let G1 = G′

1 ∪ {x}, . . . Gn = G′
n ∪ {x}.

Because G is minimally nonplanar, all of these graphs G1, . . . Gn are planar, as they are
each individually proper subgraphs of G.

Now, recall from last week our observation that if G is a planar graph and F is any face
of G, we can draw G in the plane in such a way that F is the outside face of G. Apply this
observation to each of the G1, . . . Gn and the face in each graph that contains x.

Finally, take any one of these Gi’s along with this planar embedding with x on the
outside face. By translation, place x at the origin in the plane, and by stretching and
compressing space, squish all of Gi so that it fits within a wedge with angle at most 2π/n
centered at the origin.

By doing this with all of the Gi’s and placing each in its own wedge centered at the origin,
we have created a planar embedding of G! This contradicts our claim that G was nonplanar;
therefore, our assumption that G was not at least 2-connected must have been false.

Our eventual goal is to prove that any nonplanar graph must contain a Kuratowski
subgraph. However, a direct proof of this seems tricky; what if we attempt contradiction
instead? In other words, suppose that we take a minimally nonplanar graph that contains
no Kuratowski graph; can we create a contradiction? At the least, can we find some sorts
of properties that such a graph would have to have, that we could perhaps use to find a
contradiction later?

We find one of these properties in the following proposition:

Proposition. Suppose that G is a nonplanar graph, G contains no Kuratowski subgraphs,
and that G is the smallest graph in terms of numbers of edges amongst all such graphs.
Then G is at least 3-connected.

Proof. We again proceed by contradiction. Take any such graph G. We know from our
earlier proposition that this graph is at least 2-connected; let’s assume for contradiction
that it is exactly two-connected, and therefore that there is some pair of vertices x, y such
that deleting x and y from our graph disconnects it.

Name each of these disconnected componentsG′
1, . . . G

′
n. DefineG1 = G′

1∪{x, y, exy}, . . . Gn =
G′

n ∪ {x, y, exy}; i.e. take each of the disconnected components G′
1, . . . G

′
n, and add to each

the two vertices x, y and the edge exy connecting x to y. Notice that we do this even if the
edge exy was not in our original graph!

1A graph G is k-connected if you can remove k vertices from G in such a way that makes G disconnected,
but there is no way to remove less than k vertices from G in such a way that G is disconnected. Beware:
many authors will use k-connected to denote “at least k-connected,” i.e. the weaker claim that there is no
way to disconnect G by removing less than k vertices.
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We do this because it gives us the following observation: at least one of these graphs
Gi must be nonplanar! To see this observation, proceed by contradiction, and assume not.
Then each Gi is planar, and can be drawn in the plane in such a way that the face containing
the edge exy is on the outer face of this graph. (This is where we needed this edge to exist;
without it, we might not be able to draw Gi in the plane with both x and y on the outer
face.)

Take G1, and draw it in the plane in such a fashion. Now, take G2, and expand
G2 / squish G1 so that the inner face containing exy contains G1 and overlaps with x, y.
Repeat this process with the remaining G3, . . . Gn graphs, creating a sort of Matryoshka-doll
sequence of nested planar graphs:

In particular, notice that the result of this process is a planar graph, which contradicts our
assumption that G was nonplanar! This verifies our observation that there is some Gi that
is nonplanar, as desired.

Take this Gi. Because it is smaller than our original graph and is nonplanar, it must
contain a Kuratowski graph. If this Kuratowski subgraph does not use the edge exy, or if
the edge exy is in G, then this Kuratowski subgraph is a subgraph of G, which contradicts
our claim. Otherwise, exy is used in this Kuratowski subgraph, and furthermore is not in
G!

In this case: take any other component Gj , and some vertex z ∈ G′
j . Because G is

2-connected, there must be a path from z to x and to y in Gj , as otherwise we could simply
delete one of x, y to disconnect z from Gi. But this means that there is a path from x to
y that goes through Gj ! If we replace exy with this path in our Kuratowski subgraph, we
have simply replaced an edge with a subdivision of that edge, which does not change the
Kuratowski property: so our graph G has a Kuratowski subgraph, which is a contradiction.

We now know that minimally nonplanar + no Kuratowski graphs implies at least 3-
connected; what happens if we drop the nonplanarity result? How does at least 3-connected
interact with the idea of simply not having Kuratowski subgraphs? Again, if this feels some-
what unmotivated, what we’re doing throughout this paper is a sort of “proof by explo-
ration:” we’re taking two properties we want to understand (nonplanarity, no Kuratowski
subgraphs) and basically just bashing them into all of the other properties we have until
we get someting promising.

In many cases, our choice of those other properties is mostly at random: there isn’t a
particularly great reason for looking at connectivity other than that it is often a useful thing
to consider for all graphs. I.e. if you were attempting to solve this problem on your own on
a desert island, you would probably have also looked at lots of things like chromatic/clique
numbers, max/min degree, etc. on the way; the only reason those explorations aren’t
in this writeup is that they don’t lead to the proof we’re searching for! In general, this
is the difference between your typical lecture/textbook and one’s own research; the first
presents a clean and orderly path from A to Z, while the second consists of paths from A to
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B,C,D,E, F, . . ., with maybe Z showing up at the end if the author is lucky. So, if you’re
reading these notes and wondering “why,” the answer is simply “because all of the other
things didn’t work.”

However, in other cases, there are very natural definitions and concepts to consider and
work with. In particular, if we are working with subdivisions of graphs, the concept of
“contraction” — in a sense, the opposite of subdivision — is a handy one to have:

Definition. Take a graph G, and an edge {x, y} = e ∈ G. The graph G · e, formed by
“contracting” e, is the graph formed by taking G, deleting the edge e, and identifying the
two endpoints x, y of e.

We draw an example of this this below:

We first show that if we are careful about our contractions, then we can preserve the
property of “at least 3-connectedness.”

Proposition. If G is a graph on at least 5 vertices that is at least 3-connected, then there
is some edge e ∈ G such that G · e is at least 3-connected.

Proof. Again, we proceed by contradiction. Assume not: that for every edge e = {x, y}
that we contract, the resulting graph G · e is 2-connected. Notice that if this happens, the
2-disconnecting set in G ·e must use the newly-created vertex ve, as otherwise this set would
also disconnect G itself! If this 2-disconnecting set is {v + e, z}, call z the “mate” of{x, y};
in this sense, we are assuming for a contradiction that every edge {x, y} has a mate z.

Notice that in our original graph G, deleting the two vertices corresponding to any edge
e = {x, y} along with their mate z must disconnect our graph, because deleting ve, z from
G · e disconnects this graph.

When we delete such a triple x, y, z from G, we get a collection of disconnected com-
ponents G1, . . . Gn of various sizes. Assign to each edge the size of the largest connected
component that arises from deleting that edge’s vertices along with its mate.

Let {x, y} denote the edge with the largest such number assigned to it, let z be the mate
of this edge, and let G1 be this “largest component.”

Let G2 be some other non-G1 component that we get after deleting x, y, z from G. We
know that there must be an edge from z to some other vertex v ∈ G2, as otherwise deleting
simply x and y from G would separate G2 from the rest of the graph, and G itself is not
2-connected. Let w be the mate of the edge {z, v}. What can we say about w?

On one hand, we can observe that w cannot be a part of any Gi set for i 6= 1; if it
were, then deleting z, v, w would yield a decomposition of G into pieces, one of which would
contain all of G1 along with the two vertices x, y! Because we picked {x, y} to get the largest
possible component G1, this is impossible.

On the other hand, if w is in G1 then deleting z, v, w does not actually disconnect our
graph! This is because of the following observations:
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1. Take any vertex a in our graph, in any part Gi. There must be a pair of vertex-disjoint
paths from a to both x and y, because if there wasn’t we could disconnect a from
other vertices in our graph by deleting w and at most one vertex on such a path.

2. In particular, this tells us that we take any part Gi and delete at most one vertex
from it, there is a path from any vertex a in that part to one of x, y.

3. But this means that the graph G \ {v, w, z} is connected: given any vertex a in any
part Gi, we can find a path from a to one of x, y, and from there go to any other
vertex b in any other part Gj .

This gives us the desired contradiction, and shows that there must be some edge e in our
graph such that G · e is still 3-connected.

We now show that no matter how we contract edges, we must preserve the property of
not containing a Kuratowski subgraph:

Proposition. If G does not have a Kuratowski subgraph, then neither does G · e.

Proof. It is easier to work with the contrapositive of this statement, as it gives us a positive
claim to work with (i.e. G · e contains this set structure, which is a concrete starting point
to work from) rather than the arguably more-difficult to understand negative claim (G does
not contain some set structure, which does not obviously tell us a lot about what G does
contain.) Specifically, we will show that if G · e contains a Kuratowski subgraph, then so
does G itself.

Take any graph G and edge e such that G · e contains a Kuratowski subgraph. If the
vertex ve that we got by contracting this edge is not a part of this Kuratowski subgraph,
then G trivially contains whatever Kuratowski subgraph is contained within G · e.

The interesting cases, then, occur when ve is a part of this Kuratowski subgraph. First,
notice that in any Kuratowski graph, the degree of any vertex is at least 2 and at most 4;
this is because we have started with either a K5 or K3,3 and repeatedly subdivided, which
is a process that does not change the degree of any already-existing vertices in the target
graph and introduces new vertices of degree 2.

In the event that ve is a vertex of degree at most 2 inside of this Kuratowski subgraph,
there are (up to labeling) only two possibilities for what {x, y} could have been in the
original graph:

1. Both of the Kuratowski subgraph edges could have had the same vertex x as their
endpoint.

2. One Kuratowski subgraph edge could have had x as its endpoint, and the other could
have had y as its endpoint.

In either case, this Kuratowski subgraph is still a Kuratowski graph when expanded back
out to G, with potentially a new subdivided edge.

If ve is a vertex of degree 3 inside of the Kuratowski subgraph, we can use similar logic
to see that one of the following two cases up to labeling must hold:
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1. All three of the Kuratowski subgraph edges could have had the same vertex x as their
endpoint.

2. Two Kuratowski subgraph edge could have had x as its endpoint, and the other edge
could have had y as its endpoint.

Again, in either case, this Kuratowski subgraph is still a Kuratowski graph when expanded
back out to G.

The case when ve is a vertex of degree 4 has a similar set of potential cases:

1. All four of the Kuratowski subgraph edges could have had the same vertex x as their
endpoint.

2. Three Kuratowski subgraph edge could have had x as its endpoint, and the other edge
could have had y as its endpoint.

3. Two Kuratowski subgraph edges could have x as an endpoint, while the other two
could have y as their endpoint.

The first two cases are again still obviously subdivisions of the same Kuratowski graph.
The third, however, is different! We have split our vertex of degree 4 into two vertices of
degree 3, and we cannot simply get rid of any of these degree-3 vertices by arguments about
subdivision (as subdivision only creates vertices of degree 2!)

Instead, something much more beautiful happens. First, notice that if ve was a vertex
of degree 4, then we were in a subdivided K5, as subdivided K3,3’s do not have vertices of
degree 4 in them! Therefore, we are actually in the following situation

The graph on the right: a subdivided K3,3! On one hand, this proves our claim: no matter
what G was, if G · e has a Kuratowski subgraph, we have shown that G must as well. On
the other hand, we’ve actually seen a nice connection between K5 and K3,3 that illustrates
how these two graphs are related.

By combining our results thus far, we have the following: given any at least 3-connected
graph without Kuratowski subgraphs, we can repeatedly contract edges in this graph in
a way that preserves these two properties! This is somewhat surprising, as when we take
any at least 3-connected / no-Kuratowski subgraph and reduce it all the way down to 4
vertices, we know that it is K4 (as that’s the only 3-connected graph on four vertices,) and
in particular that this graph is planar!

This leads us to hope that an inductive proof might tell us that any at least 3-connected
graph without Kuratowski graphs must be planar; i.e. if when we reduce such graphs down,
we eventually get a planar graph, then perhaps when we work our way back up we must
still have a planar graph! This turns out to work, as described here:
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Proposition. If G is at least 3-connected and does not contain a Kuratowski subgraph,
then G is planar.

Proof. We prove something much stronger: if G is at least 3-connected and does not contain
a Kuratowski subgraph, then G has a convex embedding in the plane2 in which no
three vertices lie on a line. We proceed by induction on the number of vertices of G.
For |V (G)| ≤ 4, there is only one 3-connected graph, K4, which certainly admits such an
embedding:

We now proceed to the inductive step. Take any graph G that does not contain a
Kuratowski subgraph and is at least 3-connected. We know that there is some edge e =
{x, y} such that G · e also possesses both of these properties; by induction, then, we know
that G · e has a convex embedding in the plane with no three vertices on a line!

We seek to show that the same property holds for G itself. To see this, take G · e’s
convex embedding. Delete the vertex ve corresponding to e, and look at the face that
contains where ve used to be. This face must be a cycle, as if it had any branches stemming
off of it then we could delete at most one vertex in such a branch to disconnect G, which
would imply that G · e was at most 2-connected.

Notice that all of the neighbors of x and y are contained within the vertices on this
cycle, because our embedding is planar. Label the neighbors of x on this cycle x1, . . . xn, in
the order given by walking around our cycle in a counterclockwise fashion. There are three
possibilities for the neighbors of y:

1. There is some i such that all of the neighbors of y fall between xi and xi+1 in our
cycle, possibly inclusive. If this happens, we can create a convex embedding for our
graph by placing x where ve used to be and by placing y very close to x, as illustrated
below:

2. Otherwise, it is possible that y shares three neighbors xi, xj , xk with x. In this case,
we have the following diagram:

However, the above graph is a subdivision of K5, and we said that G did not contain
any Kuratowski subgraphs! So this case is impossible.

3. Finally, it is possible that y has two neighbors yi, yj that alternate with neighbors
xi, xj of x. In this case, we have the following diagram:

2A convex embedding is a planar embedding in which all of the lines are straight lines, and moreover
all of the faces are convex polygons.
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The above graph is a subdivision of K3,3, which again we know cannot exist! Therefore
this case is also impossible; thus we are always in the first situation, where we were
able to find a convex embedding.

What can we conclude from this? Well: we proved earlier that any minimally nonplanar
graph without a Kuratowski subgraph must be at least 3-connected. Combining this result
with the above tells us that it is impossible for a graph to be both minimally nonplanar
and not contain a Kuratowski graph, as it would have to be both planar and nonplanar!
Consequently, we have proven our goal for this set of talks:

Theorem. (Kuratowski’s theorem) A graph is planar if and only if it does not contain a
Kuratowski graph as a subgraph.
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