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What is tetration?
I Many fundamental operations can be written as an iterated

application of some simpler function. The most basic is the
successor function S(n) - the integer following n.

I Addition is iterated application of S :

+(a, b) = S(S(...︸ ︷︷ ︸
b

a...))

I Multiplication is iterated application of addition by a:

∗(a, b) = +(a,+(a,︸ ︷︷ ︸
b

...0...))

I Exponentiation is iterated application of multiplication by a:

pow(a, b) = ∗(a, ∗(a,︸ ︷︷ ︸
b

...1...))

I Tetration is iterated application of exponentiation by a:

tetr(a, b) = pow(a, pow(a,︸ ︷︷ ︸
b

...1...))

Forms a sort of ”Next operator”
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Notation & Examples
Notes on notation:

+(a, b) = a + b

∗(a, b) = ab

pow(a, b) = ab

tetr(a, b) = ba

12 = 2

22 = 22 = 4

32 = 22
2

= 24 = 16

42 = 22
22

= 22
4

= 216 = 65536

52 = 22
22

2

= 265536
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The question

Most of our basic operators can operate just as well on fractions,
or even complex numbers, as well as integers.

2 ∗ x is continuous on all x , and when x is an integer, it agrees
with our recursive definition.
2x is continous on all x as well, although it’s less obvious how to
calculate – for instance – 2π.
Exponentiation for positive bases can be resolved as follows:

(am)n = anm

(ap/q)q = ap

So that by approximating any real power with a rational number
p/q, we can define it to be the unique positive real number that,
when raised to the integral power q, yields ap.
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The problem

Unfortunately, tetration has no such lovely properties, because
exponentiation (unlike multiplication) does not commute:

n(ma) 6=mn a

m(ab) 6= (ma)(mb)

In particular, the inverse of any power law can be easily derived:

f (x) = xa f −1(x) = x1/a

But no such relation holds for tetration.
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Desired properties

We want a function that agrees with na on the integers, but what
do we want it to look like in between?

I The function should be continuous (almost everywhere)

I The function should be differentiable (almost everywhere)

I Generally, the function should be analytic – continuous, and
with an analytic derivative.

I Most functions that we deal with are analytic: polynomials,
exp(x), log(x), sin(x), gamma function, Riemann zeta
function...

I Anything that can be represented by a power series
everywhere in the power series’ area of convergence.
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Existing approaches

No one has yet yielded a complete, closed-form solution to this
problem. What has been produced is:

I Several solutions that are not analytic, suffering a
discontinuity in one of their derivatives at one of the integers
(e.g. linear interpolation; quadratic interpolation; fitting eax+b

between integers)

I Proof that some analytic solution should exist

I A numerical approach that tries to ”smooth out” the
derivatives between 1x and 2x , but requires inversion of
massive matrices, whose entries don’t have a closed form

We will present a method for representing tetration with a base of
e as an infinite power series, in an almost entirely closed form.
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Our approach

We define the product power tower p(n, x) as the product of
base-e power towers of heights 1 through n, with x at the top. For
instance:

p(1, x) = ex

p(2, x) = ee
x
ex

p(3, x) = ee
ex

ee
x
ex

This function, like tetration, we can initially only define on the
integers. Although its behavior over varying x is mostly unrelated
to the behavior of tetration, we will provide an relation allowing us
to compute one from the other. We will see that if we can
generalize p to arbitary n, we can generalize tetration, as well.
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Simplifying p

There’s one value of x at which p becomes extremely simple to
evaluate, the fixed point F of the exponential function.

F = eF

F ≈ 0.3181± 1.337i

If we set x = F , then the power towers ”collapse”:

p(1,F ) = eF = F

p(2,F ) = ee
F
eF = eFF = F 2

p(3,F ) = ee
eF

ee
F
eF = ee

F
eFF = eFF 2 = F 3
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Relation 1

If we take the ratio of p(n, x) and p(n− 1, x), then we can observe
that all the factors except the highest power tower drop out:

p(n, x)

p(n − 1, x)
=

ee
ex

ee
x
ex

eex ex
= ee

ex

We have this power tower, and now we can examine its derivative:

d(ee
ex

)

dx
= ee

ex d(ee
x
)

dx
= ee

ex

ee
x d(ex)

dx
= ee

ex

ee
x
ex = p(n, x)

So we can see the derivative of the ratio of two p with different n,
is actually the same function p again! Now we can also note that
p(n,1)

p(n−1,1) = ee
ee

1

= ne.
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Simplifying p

If we have n towers of e .
. .
F

, which each collapse down to F , we
can see that p(n,F ) = F n. This is a statement that will simply
generalize to any fractional n. Thus we have determined p(n, x)
for all n, at a certain value of x .

If we can continue this proces in some way to find the derivatives
of p(n, x) (with regard to x) around this point, then we could build
a Taylor series around this point that would allow us to extrapolate
back to x = 1, and evaulate p there.
So the question then is, how do we find the derivatives of p in
general? We will need some other relations about in order to tell
us – preferrably one involving its derivative. We just found one,
however, it’s not enough to provide a full solution.
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Relation 2

The previous relation involved p(n, x) as well as p(n − 1, x) –
however, for our Taylor series, we would like to hold n completely
constant. Thus we need some way to turn our p(n − 1, x) into
p(n, x) again.

In order to attempt some such conversion, we have
to reduce the heights of the power towers. If we substitue x → lnx ,
then they will each drop by one in height:

ee
x
ex → ee

lnx
e lnx = exx

If we divide now by x , we will recover p(n − 1, x). Thus we have

p(n, lnx)

x
= p(n − 1, x)
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The derivative of p

Combining these two equations, we have

d( xp(n,x)
p(n,ln x))

dx
= p(n, x)

By expanding the left hand side by rules of differentiation, we can
arrive at an equation that gives us p′(n, x) in terms of p(n, x)
alone, in particular using the fact that at our chosen x = F , we
know that F = ln F , p(n,F ) = p(n, ln F ), and
p′(n,F ) = p′(n, ln F ). By taking further derivatives of each side of
the equation, we can calculate more and more derivatives.
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alone, in particular using the fact that at our chosen x = F , we
know that F = ln F , p(n,F ) = p(n, ln F ), and
p′(n,F ) = p′(n, ln F ). By taking further derivatives of each side of
the equation, we can calculate more and more derivatives.



Some derivatives

(Omitting n)

xp(ln x)p′(x) + p(x)p(ln x)− p(x)p′(ln x)

p(ln x)2
= p(x)

Identifying ln x with x :

p(x)2 − p(x)p′(x) + xp(x)p′(x)

p(x)2
= p(x)

p′(n,F ) =
F n(F n − 1)

F − 1

p′′(n,F ) =
F n(F 1+2n + 2F 2n − 3F 1+n − 3F n + 2F + 1)

(x2 − 1)(x − 1)
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General form

∂kP(n, x)

∂xk
=

F n

(
k∑

i=0

(k2−k)/2∑
j=0

(−1)k−iai ,j ,k F
j+in

)
k∏

i=1
(F k − 1)

where ai ,j ,k are some integral constants, all positive and non-zero.
Some relations have been found defining many of them and placing
strong restrictions on the values they can take, but we don’t yet
have a formula for them.

Putting it all together:

p(n, 1) =
∞∑
k=0

∂kP(n, x)

∂xk
(1− F )k

k!

ne =
p(n, 1)

p(n − 1, 1)
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Numerical results

As a brief numerical justification, we will evaluate the function at
the integer values for justification.

0e = 1

Our taylor series agrees with this exactly.

1e = e = 2.71828

Terms Calculated value

1 2.32 - 1.82i
2 3.33 - 0.64i
4 2.75 + 0.09i

10 2.718282 + 3× 10−16i

It converges quickly one the range of n = 0 to n = 1, which is all
we need – by raising e to that power, we can effectively add 1 to
our heigh; we can calculate 1.5e as e(

0.5e).
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