
Math/CCS 103 Professor: Padraic Bartlett

Homework 2: Algorithms

Due Friday, week 1 UCSB 2014

Homework Problems.

Pick two of the following three problems to solve!

1. Consider the following algorithm (Stoogesort1!) for sorting a list:

Algorithm. Take as input a list L = (l1, . . . ln).

(a) If your list contains one or two elements, sort it by just looking at the list.

(b) Otherwise, the list contains ≥ 3 elements. Let M = d2n/3e.
(c) Stoogesort the list (l1, . . . lm.)

(d) Stoogesort the list (ln−m+1, . . . ln).

(e) Stoogesort the list (l1, . . . lm.)

Create two lists of 7 or so elements and run this algorithm on those lists. Prove that this
algorithm sorts any list. Can you find a polynomial p(n), like n2 or n3, such that this
algorithm has runtine O(p(n))?

2. Spaghetti sort is a sorting algorithm that uses spaghetti! We define it here:

Algorithm. Take as input a list L = (l1, . . . ln). Also, a box of dried spaghetti and a
hand of appropriate size.

(a) Given this list of integers, find the largest integer m in our list.

(b) Define a full piece of spaghetti as m spaghetti-units. Using these units and your
box of spaghetti, create a piece of spaghetti of length k for every number k in our
list.

(c) Take all of your newly-formed spaghetti-integers, put them in your hand, take them
loosely in your hand and lower them to the table, so that they all stand upright,
resting on the table surface. They are now sorted by height!

(d) One by one, pick out the shortest rod of spaghetti and write it down on our list.
This process orders our list.

What is the runtime of this algorithm? Include your assumptions on how much time it
takes you to perform the various steps in this algorithm; i.e. how much effort does each
step take? What assumptions are you making about the device that is implementing
your sort? Should some steps be regarded as taking longer than others?

1Named after the comedy routines of the Three Stooges; specifically, the ones where each stooge hits the
other two.

1



3. Here is a third sorting algorithm, called CycleSort. It works on permutations of {1, . . . n}:

Algorithm. Take as input a list L = (l1, . . . ln), consisting of the numbers {1, . . . n}
under some permutation.

(a) Initialize our algorithm by defining a pair of useful placeholder values: curr, the
place in the list we’re currently sorting, and temp, which will hold a value we are
moving in our list. Set curr = 1, and don’t worry about temp yet.

(b) Look at lcurr.

(c) If lcurr is equal to curr itself, then the list element lcurr is in the right place. Proceed
according to one of the following two options:

i. If curr = n, our list is sorted and we are done.

ii. Otherwise, set curr = curr + 1 and return to (b).

(d) Otherwise, lcurr 6= curr. In this situation, enter the following loop:

i?. Set temp = lcurr. Then set lcurr = curr. Finally, set curr = temp.

ii?. If lcurr = curr, quit this loop and go to (b).

iii?. Otherwise, return to i?.

Write out a few permutations of {1, . . . 9} and run this algorithm on those lists. What is
the runtime of this algorithm? How many times does our algorithm change the value of
any entry in our list? (This third property is the cool feature of this algorithm, and is
why it sometimes sees use in practical settings.)

2


