Math/CCS 103	Professor: Padraic Bartlett	
	Homework 5: NP-Completeness	
Due Friday, week 3		UCSB 2014

Homework Problems.

Pick two of the problems below, and solve them!

1. Recall that the degree of a vertex v in a graph is the number of edges leaving that vertex.
(a) Prove that if a graph G has each of its vertices with odd degree, then G does not admit a triangulation.
(b) Prove that if the number of edges in G is not divisible by 3 , then G does not admit a triangulation.
(c) Find a graph G where every vertex has even degree and the number of edges is a multiple of 3 , but G does not admit a triangulation.
2. Find a complete graph K_{n} such that

- K_{n} is decomposable into triangles, and
- $n>3$.

3. Consider the following game, which you may recognize as Minesweeper:

Problem. Instance: a $n \times n$ grid, in which each cell has the following properties:

- Each cell is either revealed or unrevealed.
- If a cell is revealed, it contains a number.

Given such a board, we want to find a way of placing mines onto some of the unrevealed cells, so that the number on each revealed cell corresponds to the number of its neighbors that contain mines. For example, if a revealed cell was labeled 8 , all 8 of its neighboring cells would contain mines.

We say that a board is minesweeper-consistent if there is such a way of placing these mines.

Create an algorithm for determining whether a given board is minesweeper-consistent. Show that Minesweeper is in NP.

