
Math/CCS 103 Professor: Padraic Bartlett

Minilecture 2: Sorting Algorithms

Week 1 UCSB 2014

On Monday’s homework, we looked at an algorithm designed to sort a list! In this class,
we will study several such algorithms, and study their runtimes.

1 Bubblesort

The sorting algorithm from the HW, bubblesort, is a relatively classical and beautiful sorting
algorithm:

Algorithm. Take as input some list L = (l1, . . . ln) of objects, along with some operation ≤
that can compare any two of these elements. Perform the following algorithm:

1. Create a integer variable loc and a boolean variable didSwap.

2. Set the variable loc to 1, and didSwap to false.

3. While the variable loc is < n, perform the following steps:

(a) If lloc > lloc+1, swap the two elements lloc, lloc+1 in our list and set didSwap to true.

(b) Regardless of whether you swapped elements or not, add 1 to the variable loc, and
go to 3.

4. If didSwap is true, then go to 2.

5. Otherwise, if didSwap is false, we went through our entire list and never found any pair
of consecutive elements such that the second was larger than the first. Therefore, our
list is sorted! Output our list.

A sample run of this algorithm on the list (1, 4, 3, 2, 5) is presented on the next page:

1

run step didSwap loc L

1 2 false 1 (1, 4, 3, 2, 5)
1 3(a) false 1 (1,4, 3, 2, 5)
1 3(b) false 2 (1,4, 3, 2, 5)
1 3(a) true 2 (1,3,4, 2, 5)
1 3(b) true 3 (1,3,4, 2, 5)
1 3(a) true 3 (1, 3,2,4, 5)
1 3(b) true 4 (1, 3,2,4, 5)
1 3(a) true 4 (1, 3, 2,4,5)
1 3(b) true 5 (1, 3, 2,4,5)
1 4 true 5 (1, 3, 2, 4, 5)
2 2 false 1 (1, 3, 2, 4, 5)
2 3(a) false 1 (1,3, 2, 4, 5)
2 3(b) false 2 (1,3, 2, 4, 5)
2 3(a) true 2 (1,2,3, 4, 5)
2 3(b) true 3 (1,2,3, 4, 5)
2 3(a) true 3 (1, 2,3,4, 5)
2 3(b) true 4 (1, 2,3,4, 5)
2 3(a) true 4 (1, 2, 3,4,5)
2 3(b) true 5 (1, 2, 3,4,5)
2 4 true 5 (1, 2, 3, 4, 5)
3 2 false 1 (1, 2, 3, 4, 5)
3 3(a) false 1 (1,2, 3, 4, 5)
3 3(b) false 2 (1,2, 3, 4, 5)
3 3(a) false 2 (1,2,3, 4, 5)
3 3(b) false 3 (1,2,3, 4, 5)
3 3(a) false 3 (1, 2,3,4, 5)
3 3(b) false 4 (1, 2,3,4, 5)
3 3(a) false 4 (1, 2, 3,4,5)
3 3(b) false 5 (1, 2, 3,4,5)
3 4 false 5 (1, 2, 3, 4, 5)
3 5 − − (1, 2, 3, 4, 5)

On the HW, you were asked to find the complexity of this algorithm, which (spoiler) is
O(n2). Instead of studying this further, we’re going to look at several other sorting algorithms!

Here’s a sorting algorithm that is slightly worse than bubblesort: bogosort!

Algorithm. Take as input some list L = (l1, . . . ln) of objects, along with some operation ≤
that can compare any two of these elements. Perform the following algorithm:

1. Check this list to see if it is already in order. (Formally: create some variable loc,
initialize it at 1, and go through the list comparing elements lloc, lloc+1. If there’s any
pair that are out of order, stop searching and declare the list out of order; otherwise,
continue until you’ve searched the whole list.)

2. If the list was in order, stop! You’re done.

2

3. Otherwise, the list is out of order. Randomly select a permutation of our list, and reorder
our list according to this permutation. Go to 1.

This algorithm is akin to sorting a deck of cards by repeatedly (a) checking if it’s in order, (b)
throwing it up in the air if it’s not, and repeating until it’s sorted.

If L’s elements are all distinct, bogosort has an expected runtime of n!; there are n! many
ways to permute the elements of our list, while exactly one of them is the correct sorting of
L. Similarly, bogosort has a worst-case runtime of ∞; given any finite number of steps t, it’s
easily possible that our first t shuffles don’t accidentally sort our list.

The third sorting algorithm we study here is sleepsort, which is famous mostly for being
the only sorting algorithm discovered by 4chan1. It runs in “linear” time, for very stupidly
defined values of linear, and we define it here:

Algorithm. Take as input some list {l1, . . . ln} of n distinct integers. Also, your system should
have some sort of timekeeping mechanism (if you’re doing this analog, you’d want someone
with a stopwatch.)

0. For every number li in your list, create a process that once we start our timekeeping
mechanism will “sleep” for li seconds, and then print itself.

1. Start our clock.

2. After t seconds, all of the numbers ≤ t have printed themselves, in order of their size.
Consequently, after a number of seconds equal to the size of the largest element in your
list, you’ve written down all of the numbers in order! Win.

Properties of sleepsort:

• Sleepsort’s name comes from the sleep command-line program, which on input n creates
a process that waits n seconds before doing anything else. The following script is an
implementation of sleepsort:

#!/bin/bash

function f() {

sleep "$1"

echo "$1"

}

while [-n "$1"]

do

f "$1" &

shift

done

wait

Assuming no issues with parallelization, this takes as long to run as the largest element in
our set.

We close with a fourth sort that (while as esoteric in some ways as bogosort) actually has
some nice properties and uses: beadsort!

1Don’t look up 4chan.

3

Algorithm. Take as input some list L = (l1, . . . ln) of positive integers; as well, have on hand
m =

∑n
i=1 li many beads, and maxn

i=1 li many poles on which to place these beads.

1. Label our poles 1 . . .m.

2. For each element li in our list, place one bead on each of the poles 1, 2 . . . li.

3. Let gravity occur.

4. Starting from height n and working your way down, read off the number of beads at that
given height. Write down this number as lk.

This algorithm is perhaps best illustrated with a pair of pictures:

Setup:

Row	n

...

Row	2

Row	1

Pole	1 Pole	2 Pole	m...

2

3

3

4

1

Result:

Row	n

...

Row	2

Row	1

Pole	1 Pole	2 Pole	m...

2

3

3

4

1

The beautiful thing about this algorithm is that its runtime is (time to place beads on
poles) + (time for gravity) + (time to read beads). Gravity takes time roughly on the order of√
n, while the time to place beads on poles and read beads off of poles takes anywhere between

n and m, depending on how efficient you are at it. In many cases, this can be much faster
than n2, when implemented by people or specialized hardware!

We close here by mentioning a fourth kind of sorting algorithm: quicksort!

4

Algorithm. Take as input some list L = (l1, . . . ln) of positive integers.

1. Pick an element lk out of our list. Call this a pivot element.

2. Take the rest of our list, and split it into two lists: the list L< of elements less than our
pivot, and the list L≥ of elements that are greater than or equal to our pivot.

3. Quicksort the two lists L< and L≥.

Note that this algorithm is recursive in nature: it calls lots of copies of itself to sort a list.

The difficulty with quicksort implementations is in that word “pick” at the first step. Typically,
as we will discuss in a bit, quicksort takes something like O(n log(n)) steps to sort our list;
however, there are occasional lists where it takes n2-many steps to sort the list! In particular,
if we have any deterministic method that’s defined ahead of time for picking out elements, like
(say) “always choose the first element of our list for the pivot,” it’s possible that the list we
start from will make us take n runs to sort our list. For example, suppose that we started with
the list (1, 2, . . . n):

1. At the start, we choose the element 1 as a pivot. We then split our list into two lists, L<

and L≥: the first list, by definition, is empty, while the second list is (2, 3, . . . n).

2. We now quicksort these two lists. The empty set is trivially sorted! To quicksort the
second list, we choose its first element (2) as a pivot, and split it into two lists L< = ∅
and L≥ = (3, 4, . . . n).

3. . . . repeat this process!

This clearly takes n passes, and therefore O(n2) comparisons, to sort our list. Furthermore,
there’s no deterministic algorithm that doesn’t consider our list that can avoid this problem:
given any deterministic algorithm that will pick the k(L)-th element out of a list L of n
elements, we can put the smallest element of our list at the location k(L), the second-smallest
element at the location corresponding to where k would pick an element out of the list L \
(smallest element), and so on/so forth2 This is potentially problematic: if a malicious attacker
knew our algorithm and wanted to make our system crash, it could intentionally feed us lots
of “worst-case scenario” lists. How do we deal with this?

Again, the answer to this problem is to use randomness! In particular, suppose that we
choose our pivot element randomly. What is the expected number of passes we will have to
make through any list?

Well, one way to get a rough upper bound is the following: given a list L, call a pivot
element p “good” if it’s from the middle-half of the elements of L after sorting, and call it
“bad” otherwise. The probability that a random pivot is “good” is clearly 1/2. Furthermore,
if we pick such a good pivot, it will cut our list of n elements into two pieces, one of size at
most 3n/4 and the other of size at least n/4; otherwise, if we pick a bad pivot, it’s at the least
the same as not doing anything (i.e. it leaves us with pretty much the same list.)

2However, there are deterministic algorithms that can take your list, read through it in O(n) time, and
create a set of “good” pivots for us to use! This is a second way around the problem we’re describing here, and
is pretty efficient, as adding O(n) runtime to a O(n log(n)) algorithm doesn’t change the overall nature of its
complexity. See http://www.cc.gatech.edu/ mihail/medianCMU.pdf for a discussion of this.

5

http://www.cc.gatech.edu/~mihail/medianCMU.pdf

Therefore, if we set T (n) to be the expected amount of steps that it will take to random-
quicksort a list with n elements, we have just shown that

T (n) ≤ n +
1

2

(
T

(
3n

4

)
+ T

(n
4

))
+

1

2
T (n).

This is because each choice of pivot takes n comparisons to determine how to split our sets,
and we’ve either chosen a good pivot (in which case we’ve split our sets into two pieces) or a
bad pivot (in which case we’ve not split our sets at all.) Solving for T (n) gives us

T (n) ≤ 2n + T

(
3n

4

)
+ T

(n
4

)
.

Using this, we can solve for an upper bound on T (n): in particular, if we guessed that T (n)
was something like an · log(n), we could prove by induction that T (n) ≤ an · log(n). If a ≥ 2,
this is certainly true for n = 2, as it takes us at most 2 steps to quicksort a list of two elements
(pick a pivot, the other element is either less than or greater than it.)

So: if we inductively assume that it holds for all values ≤ n, we get

T (n) ≤2n +
3an

4
log

(
3n

4

)
+

an

4
log
(n

4

)
=2n +

an

4
log

((
3n

4

)3
)

+
an

4
log
(n

4

)
=2n +

an

4
log

((
3n

4

)3

· n
4

)

=2n +
an

4
log

(
33n4

44

)
=2n +

an

4
log

(
33

44

)
+

an

4
log
(
n4
)

=

(
2 +

a

4
log

(
33

44

))
n + an log(n)

≤
(

2 +
a

4
· (−.97)

)
n + an log(n)

So, if a ≥ 9, say, then 1 + a
4 · (−.97) is less than 0, and therefore we have that this entire

quantity is ≤ an log(n), which is what we wanted to prove. So this quicksort has an expected
runtime that is O(n log(n)): i.e. up to a constant, it runs like n log(n)! And it’s immune to
someone intentionally creating “bad” lists, because it’s randomized: no matter what list it’s
fed, it will expect to finish after ≤ 9n log(n) steps.

6

	Bubblesort

