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This miniature talk builds off of the game of Sim we mentioned earlier! Consider the
following definitions:

1. The complete graph on n vertices, Kn, is the simple graph on the vertex set {v1, v2, . . . vn}
that has every possible edge: in other words, E(Kn) = {{vi, vj} : i 6= j}. We draw
several of these graphs below:
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2. A two-coloring of the edges in a graph, given two colors (say, red and blue,) is a
mapping that assigns to each edge in the graph one of these two colors.
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Game. Consider the following game, which is the n, k-generalization of Sim:

Board: n vertices drawn on a piece of paper.

Players: Two players, Red and Blue, each with a pen of their respective color.

Play: The players alternate turns, drawing edges between vertices using their colored pens.
Edges must be drawn between vertices that have not been connected with an edge
yet; i.e. once one player connects two vertices with an edge, no other player can draw
an edge that connects those two vertices.

End state: A player loses if there is ever a collection of k vertices connected only by edges of that
player’s color: i.e. if that player creates a monochromatic Kk in their color.

In other words, we are playing on a Kn, and each player is trying to avoid making a
monochrome Kk in their respective color: in Sim, we were playing on a K6, and each player
was trying to avoid making a K3.

In this presentation, we will prove the following theorem:
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Theorem 1. For any k, there is a n such that games of (n, k)-Sim never end in draws.

In particular, we will prove the following stronger statement:

Theorem 2. For any two integers k, l, there is a n such that any red-blue coloring of Kn

contains either a red Kk or a blue Kl.

Proof. Let R(k, l) denote the smallest value of n such that if Kn’s edges are all colored
either red or blue, then Kn necessarily contains an all-red Kk or an all-blue Kl. We seek to
show that R is well-defined, and always exists.

We first note some simple starting cases. We have R(n, 1) = R(1, n) = 1, as any two-
coloring of Kn’s edges has a K1 in which all of the edges are whatever color we want (because
there are no edges in K1, as it is the graph with one vertex and no edges.)

As well, we have R(n, 2) = R(2, n) = n, because any red-blue two-coloring of Kn’s edges
either

• paints all of the edges the same color (which makes a monochrome Kn of one of our
colors), or

• paints at least one edge red and another blue (which makes monochrome K2’s of both
colors.)

Furthermore, we claim that we have the following recursive bound on the growth of
R(r, s) :

R(r, s) ≤ R(r, s− 1) + R(r − 1, s)

To prove this, we proceed by induction on the sum r + s. We’ve already proven the base
cases via the two examples above: so we take any pair r, s, and can assume that our bound
holds for any x, y with x + y < r + s.

Take a complete graph K on (R(r, s−1)+R(r−1, s)) many vertices, and color its edges
red and blue. We seek to show that there’s either a monochrome red Kr or monochrome
blue Ks in Kn.

To see this, we mimic the proof structure that worked for us in our game. Pick any
v ∈ K, and partition the rest of K’s vertices into two sets:

• B′, which contains all of the vertices in K connected to v by a blue edge, and

• R′, which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs1 of K induced by these vertices, respectively.
Because K has

R(r, s− 1) + R(r − 1, s) = |V (B)|+ |V (R)|+ 1

many vertices, either |V (B)| ≥ R(r, s− 1) or |V (R)| ≥ R(r − 1, s).
Suppose that we have |V (B)| ≥ R(r, s− 1). Because r+ s− 1 < r+ s, we can apply our

inductive hypothesis, which tells us that we have either

1Given a graph G = (V,E) and a subset of vertices X ⊂ V from G, the subgraph induced by X is the
graph with vertex set X, where two vertices are connected in X whenever they are connected in G.
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1. a red Kr inside of B, or

2. a blue Ks−1 inside of B, in which case (by combining this blue Ks−1 with v and its
edges to B) we have a blue Ks inside of our entire Kn.

These are the two cases we were looking for; so, in the situation where |V (B)| ≥ R(r, s−1),
we’ve proven our claim!

Similarly, if we have |R| ≥ R(r− 1, s), we can use induction to tell us that there’s either

1. a blue Ks inside of R, or

2. a red Kr−1 inside of R, in which case (by combining this red Kr−1 with v and its
edges to R) we have a red Kr inside of our entire Kn,

and we’re also done.

In the language of the proof above, our Sim presentation can be thought of as proving
that R(3, 3) = 6.
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