Math/CS 120: Intro. to Math	Professor: Padraic Bartlett
Homework 18: More Complex Numbers	
Due Friday at 11:30am, Finals Week	UCSB 2014

Solve three of the following six problems. Also, this set is extra-credit! This set can be submitted by email if you can't turn it in to my office. Have fun!

- 1. Factor 1500 into primes over the Gaussian integers $\mathbb{Z}[i]$.
- 2. Prove that there are infinitely many Gaussian integer primes.
- 3. Let ω denote the complex number $e^{2\pi i/3}$, which on the past HW you proved was a third root of unity (that is, $\omega^3 = 1$). Consider the set $\mathbb{Z}[\omega]$ of the **Eisenstein** integers, defined as follows:

$$\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{R}\}.$$

- (a) Prove that the Eisenstein integers are closed under multiplication and addition.
- (b) Let $N(a + b\omega)$ denote the square of the distance of $a + b\omega$ from the origin in \mathbb{C} . Prove that $N(a + b\omega) = a^2 + b^2 - ab$.
- (c) Show that $\pm 1, \pm \omega, \pm (1 + \omega)$ are the only three Eisenstein integers z for which N(z) = 1.
- 4. Create a version of the Euclidean algorithm that works for the Eisenstein integers. Use it to prove that in the Eisenstein integers, all elements can be factored uniquely into Eisenstein-integer primes.
- 5. Use the Eisenstein integers to find all integer solutions to the equation $y^2 = x^3 + 1$.
- 6. Prove that unique factorization does not hold for the Hurwitz integers: that is, find some $\tau = a + bi + cj + dk \in \mathcal{H}$ with two distinct factorizations into different sets of irreducible elements.