| Math/CS 120: Intro. to Math | Professor: Padraic Bartlett |
| :--- | ---: | ---: |
| Homework 18: More Complex Numbers | |
| Due Friday at 11:30am, Finals Week | UCSB 2014 |

Solve three of the following six problems. Also, this set is extra-credit! This set can be submitted by email if you can't turn it in to my office. Have fun!

1. Factor 1500 into primes over the Gaussian integers $\mathbb{Z}[i]$.
2. Prove that there are infinitely many Gaussian integer primes.
3. Let ω denote the complex number $e^{2 \pi i / 3}$, which on the past HW you proved was a third root of unity (that is, $\omega^{3}=1$). Consider the set $\mathbb{Z}[\omega]$ of the Eisenstein integers, defined as follows:

$$
\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{R}\} .
$$

(a) Prove that the Eisenstein integers are closed under multiplication and addition.
(b) Let $N(a+b \omega)$ denote the square of the distance of $a+b \omega$ from the origin in \mathbb{C}. Prove that $N(a+b \omega)=a^{2}+b^{2}-a b$.
(c) Show that $\pm 1, \pm \omega, \pm(1+\omega)$ are the only three Eisenstein integers z for which $N(z)=1$.
4. Create a version of the Euclidean algorithm that works for the Eisenstein integers. Use it to prove that in the Eisenstein integers, all elements can be factored uniquely into Eisenstein-integer primes.
5. Use the Eisenstein integers to find all integer solutions to the equation $y^{2}=x^{3}+1$.
6. Prove that unique factorization does not hold for the Hurwitz integers: that is, find some $\tau=a+b i+c j+d k \in \mathcal{H}$ with two distinct factorizations into different sets of irreducible elements.

