Math/CS 120: Intro. to Math	Professor: Padraic Bartlett	
	Homework 2: More Proofs	
Due Friday, week 1		UCSB 2014

Do two of the four problems listed here! Prove all of your claims.

1. Prove or disprove the following statements. If you disprove any statement, include an example that disproves the statement: if you prove a statement, include an example that proves the claim made.
(a) If x and y are irrational, then $x+y$ is irrational.
(b) If x is irrational and y is rational, then $x+y$ is irrational.
(c) If x and y are rational, then $x+y$ is rational.
(d) If x and y are irrational, then $x \cdot y$ is irrational.
(e) If x is irrational and y is rational, then $x \cdot y$ is irrational.
(f) If x and y are rational, then $x \cdot y$ is rational.
(g) If x and y are rational, then x^{y} is rational.
2. Suppose that you have a 10×10 chessboard, and that you want to cover it with (1×4)-sized dominoes, so that no dominoes overlap or stick off the board. Can you do this? Or is it impossible? (Prove either claim.)
3. The game of generalized n-tic-tac-toe is played as follows: on a $n \times n$ grid, two players X and O take turns placing their respective symbols x, o into cells of the grid. No cell can be repeated. The game ends whenever any player gets n consecutive copies of their symbol on the same row /column / diagonal, or when the grid is completely filled in without any player having any such n consecutive symbols. (Normal tic-tactoe is where $n=3$.)

Prove that there is no strategy in generalized tic-tac-toe where the second player to move is guaranteed to win.
4. Prove that there are infinitely many prime numbers.

