Math/CS 120: Intro. to Math	Professor: Padraic Bartlett	
	Homework 5: More Cardinality	
Due Friday, Week 3	UCSB 2014	

Do three of the six problems below!

1. A real number r is called algebraic if and only if there is some degree n and integer constants $a_{0}, \ldots a_{n}$ such that r is a root^{1} of the following polynomial:

$$
a+0+a_{1} x+\ldots+a_{n} x^{n}
$$

Most numbers you know are algebraic: for example, all of \mathbb{Q} is (they're roots of the polynomial $q x-p$), as is $\sqrt{2}$ (it's a root of $x^{2}-2$).

Prove or disprove the following statement: \mathbb{N} has the same cardinality (size) as \mathcal{A}, the collection of all algebraic numbers.
2. Define the Cantor set \mathcal{C} as follows:

- Start with the interval $[0,1]$. Call this set C_{0}.
- Remove the middle-third of this set, so that you have $[0,1 / 3]$ and $[2 / 3,1]$ left over. Call this set C_{1}.
- Remove the middle-third of those two sets, so that you have $[0,1 / 9],[2 / 9,1 / 3],[2 / 3,7 / 9],[8 / 9,1]$ left over. Call this set C_{2}.
- Repeat this process!

Define \mathcal{C}, the Cantor set, as the set made by taking all of the elements x such that x is in C_{i}, for every i.
(a) Find an element in \mathcal{C}.
(b) Show that \mathcal{C} contains infinitely many elements.
(c) Can you make a bijection between \mathcal{C} and $[0,1]$?
3. Let X denote the set made out of all possible sequences of natural numbers with finite length: i.e. for every element x of X, there is some length k such that x looks like some string $\left(n_{0}, n_{1}, \ldots n_{k}\right)$, where the $n_{1} \ldots n_{k}$'s are all natural numbers. Is this set the same cardinality as \mathbb{N} ?
4. Let Y denote the set made out of all possible sequences of natural numbers of infinite length: i.e. for every element y of Y, y looks like some string $\left(n_{0}, n_{1}, \ldots\right)$, where the elements n_{i} are natural numbers. Is this set the same cardinality as \mathbb{N} ?

[^0]5. We say that a set is countably infinite if there is a bijection from that set to \mathbb{N}. Suppose that $A_{1}, A_{2}, A_{3}, \ldots$ is a sequence of countably infinite sets. Define
$$
B=A_{1} \cup A_{2} \cup A_{3} \cup \ldots=\bigcup_{n=1}^{\infty} A_{n} .
$$

Show that $|B|=|\mathbb{N}|$.
6. Given sets A, B, C and functions $f: A \rightarrow B, g: B \rightarrow C$, form the function $h=g \circ f:$ $A \rightarrow C$. In other words, h is the function from A to C defined by $h(a)=g(f(a))$.
For each of the following claims, provide a proof or a disproof:
(a) If h is injective, then f is injective.
(b) If h is injective, then g is injective.
(c) If h is surjective, then f is surjective.
(d) If h is surjective, then g is surjective.

[^0]: ${ }^{1} \mathrm{~A}$ root of a polynomial is a number you can plug into that polynomial and get 0 . For example, 2 is a root of the polynomial $x^{2}-4$, because plugging in 2 for x yields 0 .

