Math/CS 120: Intro. to Math Professor: Padraic Bartlett

Homework 7: Set Theory

Due Friday, Week 4 UCSB 2014

Do three of the six problems below!

1. In class, someone asked if it was possible for a set A to contain itself: in other words, if $A \in A$ is possible given our rules for sets!
Surprisingly, it turns out that our existing axioms are not strong enough to stop this from happening. However, the idea of a set containing itself is kind of bothersome, so mathematicians decided to create the following axiom:

Axiom. (Axiom of Foundation) Every nonempty set contains an element that is disjoint from the original set. In symbols:

$$
\forall A,((A \neq \emptyset) \Rightarrow(\exists x(x \in A) \wedge(x \cap A=\emptyset)))
$$

Suppose you have this axiom, along with the other axioms we've created thus far (empty set, pairing, union, power set, comprehension, infinity.) Prove that it is impossible for $A \in A$ to hold for any set A.
2. A related impossible object is an infinite sequence of nested sets, defined as follows: we call A an infinite sequence of descending sets if for any $x \in A$, there is some other $y \in A$ such that $x \in y$. The idea is that if such a set existed, we could build an infinite ${ }^{1}$ chain

$$
x_{1} \ni x_{2} \ni x_{3} \ni x_{4} \ni \ldots
$$

by repeatedly picking for each set x_{i} the next set x_{i+1} such that it's in A and contained by x_{i}.
This seems awful, right? Show that such a set cannot exist, if you have the above axiom of foundation along with all of our other axioms.
3. We constructed the natural numbers as follows:

- Take any inductive set S (one must exist, by the axiom of infinity.)
- Using power set, form the collection of all subsets of this inductive set, $\mathcal{P}(S)$.
- Using comprehension, form the subset T of $\mathcal{P}(S)$, consisting of all of the subsets of S that are inductive.
- Again using comprehension, take the intersection of all of the elements of T.
- Call this set \mathbb{N}_{S}.

[^0]In class, we claimed that this set didn't really care about S, in the following sense: for any two inductive sets R, S, we proved that $\mathbb{N}_{R}=\mathbb{N}_{S}$. As part of this proof, we looked at the intersection $C=\mathbb{N}_{R} \cap \mathbb{N}_{S}$ of these two sets, and claimed that this intersection was inductive - however, we left the proof of this claim for the homework!
Prove this here: for any two inductive sets S, T, show that $C=\mathbb{N}_{R} \cap \mathbb{N}_{S}$ is an inductive set. (Hint: as with all problems involving definitions, show that C satisfies the definition of being an inductive set.)
4. Suppose that a, b are members of the natural numbers \mathbb{N} as defined via sets in class thus far - that is, think of elements of \mathbb{N} as sets, i.e. $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}, \ldots$ Also suppose that $b \in a$. Prove that a is not a subset of b : in symbols, $a \nsubseteq b$.
5. Assume that $\mathcal{P}(A)=\mathcal{P}(B)$. Prove that $A=B$.
6. Given any set A, we can always form by the union axiom the set

$$
\bigcup A:=\bigcup_{A^{\prime} \in A} A^{\prime} .
$$

Suppose that A, B are elements of \mathbb{N} such that $A=S(B)$, where S is the successor function $S(B)=B \cup\{B\}$. Prove ${ }^{2}$ that the set $\bigcup A$ is equal to the set B.
(Hint: form the collection $X=\{B \in \mathbb{N} \mid \bigcup S(B)=B\}$, using our axioms. If you can show this is an inductive set, what can you conclude?)

[^1]
[^0]: ${ }^{1}$ Side note: the LaTeX command for the backwards " \in," " $\ni, "$ is " \backslash ni." This is adorable.

[^1]: ${ }^{2}$ In this sense, \bigcup "undoes" successor; if the successor function is like +1 on the natural numbers, then \bigcup is like -1 .

