Math/CS 120: Intro. to Math Professor: Padraic Bartlett

Homework 8: More Set Theory

Due Friday, Week $4 \quad$ UCSB 2014

Do one of the three problems below!

1. In class on Monday, for any two sets x, y we defined the ordered pair (x, y) to be the two-element set $\{\{x\},\{x, y\}\}$. We picked this definition because we could uniquely translate any ordered pair (x, y) into such a two-element set, and always decode any such two-element set uniquely into an ordered pair.
You might hope that a similar construction would work for ordered triples: i.e. one might hope that for any sets x, y, z, the definition

$$
(x, y, z):=\{\{x\},\{x, y\},\{x, y, z\}\}
$$

would give us a way to describe ordered triples. Show that this definition is "bad," in the following sense: find objects a, b, c, d, e, f such that $(a, b, c) \neq(d, e, f)$ but $\{\{a\},\{a, b\},\{a, b, c\}\}=\{\{d\},\{d, e\},\{d, e, f\}\}$. (In other words, this definition classifies different ordered triples as the same thing, which is not what we'd want!)
2. Show that there is no set A that contains every ordered pair.
3. Suppose that A, B, C are all sets. Prove or disprove the following statements:
(a) $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
(b) If $A \neq \emptyset$ and $A \times B=A \times C$, then $B=C$.
(c) If D is the set $\{A \times X \mid X \in B\}$, then ${ }^{1} A \times(\bigcup B)=\bigcup D$.

[^0]
[^0]: ${ }^{1}$ On our last problem set, we defined $\bigcup A$ as the union $\bigcup_{A^{\prime} \in A} A^{\prime}$ of all of the elements of A.

