Math/CS 120: Intro. to Math

Professor: Padraic Bartlett

Homework 9: Equivalence Relations

Due Friday, Week 5

UCSB 2014

Hey! These problems are slightly harder than normal. Do **two** of the **five** problems below!

1. Consider the collection of all polynomials with real-valued coefficients, which we denote as $\mathbb{R}[x]$. Take any polynomial $h(x) \in \mathbb{R}[x]$.

Consider the following relation:

$$\equiv_h := \{ (f(x), g(x)) \mid \exists q(x) \in \mathbb{R}[x], f(x) - g(x) = q(x)h(x) \}.$$

For example, if h(x) = x - 2, we would say that $f(x) = x^2 - 4$ is equivalent to $g(x) = x^2 - 3x + 2$, because

$$f(x) - g(x) = x^{2} - 4 - (x^{2} - 3x + 2) = 3x - 6 = 3(x - 2) = 3h(x)$$

Prove that \equiv_h is an equivalence relation on the collection of all polynomials.

2. Let's continue to work with the equivalence relation \equiv_h defined in the problem above. Denote any equivalence class containing a polynomial f(x) as $[f(x)]_h$: this represents the collection of all of the polynomials equivalent to f(x) under \equiv_h .

We can define $+, \cdot$ on these equivalence classes as follows: $[f(x)]_h + [g(x)]_h = [f(x) + g(x)]_h$, and $[f(x)]_h \cdot [g(x)]_h = [f(x) \cdot g(x)]_h$.

Set $h(x) = x^2 + 1$ for this problem, and let $(\mathbb{R}[x]/h(x))$ denote the collection of equivalence classes for $\mathbb{R}[x]$ under h.

- (a) Show that $[x]_h \cdot [x]_h + [1]_h = [0]_h$.
- (b) Consider the map $\varphi : \mathbb{C} \to (\mathbb{R}[x]/h(x))$ defined by $h(a + ib) = [a + bx]_h$. Is φ a bijection? Does φ preserve addition and multiplication: in other words, for any $a, b, c, d \in \mathbb{R}$, do we have
 - $\varphi((a+ib) + (c+id)) = [a+bx]_h + [c+dx]_h$, and
 - $\varphi((a+ib) \cdot (c+id)) = [a+bx]_h \cdot [c+dx]_h?$
- 3. There are two possible equivalence relations on the two-element set $\{1, 2\}$:
 - The relation \sim_A that says that $1 \sim_A 1$ and $2 \sim_A 2$ are true, and that $1 \sim_A 2$ and $2 \sim_A 1$ are false.
 - The relation \sim_A that says that $1 \sim_A 1, 2 \sim_A 1, 1 \sim_A 2$, and $2 \sim_A 2$ are all true.

For any n, let E_n denote all of the possible equivalence classes on the set $\{1, 2, \ldots n\}$. Find a recurrence relation for E_n . (For example: we defined the Fibonacci numbers recursively via the equation $f_{n+1} = f_n + f_{n-1}$. In this problem, you are being asked to create an recursive expression for E_n ; i.e. a way to express E_n in terms of earlier terms.)

- 4. Let X be some set, and $S \subseteq X \times X$ be a relation on the set X.
 - (a) Prove that there is some equivalence relation $R \subset X \times X$ such that $S \subseteq R$. (If you're not comfortable with the subset notation: this is a relation R with the property that if xSy, then xRy must also hold.)
 - (b) Take the collection of all equivalence relations T such that $T \supseteq S$. Let $R_S = \bigcap_T T$ denote the intersection of all of these equivalence relations: in other words, R_S is a relation where xR_Sy holds only if xTy holds for each T. Show that R is an equivalence relation. (We think of R as the equivalence relation **generated** by S.)
 - (c) Consider the set $X = \{1, 2, 3, 4, 5\}$ and relation $S = \{(1, 2), (3, 4)\}$: i.e. S thinks that 1S2, 3S4 are both true, and that all other relations are false. Find the equivalence relation R_S generated by S.
- 5. (a) Give an equivalence relation \sim on \mathbb{R} such that the equivalence class of any element is size 4.
 - (b) Give an equivalence relation \sim on \mathbb{R} such that there are infinitely many equivalence classes of \mathbb{R} under \sim , and each equivalence class has the same cardinality as \mathbb{R} .