Math/CS 120: Intro. to Math
 Professor: Padraic Bartlett

Homework 9: Equivalence Relations

Due Friday, Week 5
UCSB 2014

Hey! These problems are slightly harder than normal. Do two of the five problems below!

1. Consider the collection of all polynomials with real-valued coefficients, which we denote as $\mathbb{R}[x]$. Take any polynomial $h(x) \in \mathbb{R}[x]$.
Consider the following relation:

$$
\equiv_{h}:=\{(f(x), g(x)) \mid \exists q(x) \in \mathbb{R}[x], f(x)-g(x)=q(x) h(x)\} .
$$

For example, if $h(x)=x-2$, we would say that $f(x)=x^{2}-4$ is equivalent to $g(x)=x^{2}-3 x+2$, because

$$
f(x)-g(x)=x^{2}-4-\left(x^{2}-3 x+2\right)=3 x-6=3(x-2)=3 h(x) .
$$

Prove that \equiv_{h} is an equivalence relation on the collection of all polynomials.
2. Let's continue to work with the equivalence relation \equiv_{h} defined in the problem above. Denote any equivalence class containing a polynomial $f(x)$ as $[f(x)]_{h}$: this represents the collection of all of the polynomials equivalent to $f(x)$ under \equiv_{h}.
We can define + , on these equivalence classes as follows: $[f(x)]_{h}+[g(x)]_{h}=[f(x)+$ $g(x)]_{h}$, and $[f(x)]_{h} \cdot[g(x)]_{h}=[f(x) \cdot g(x)]_{h}$.
Set $h(x)=x^{2}+1$ for this problem, and let $(\mathbb{R}[x] / h(x))$ denote the collection of equivalence classes for $\mathbb{R}[x]$ under h.
(a) Show that $[x]_{h} \cdot[x]_{h}+[1]_{h}=[0]_{h}$.
(b) Consider the map $\varphi: \mathbb{C} \rightarrow(\mathbb{R}[x] / h(x))$ defined by $h(a+i b)=[a+b x]_{h}$. Is φ a bijection? Does φ preserve addition and multiplication: in other words, for any $a, b, c, d \in \mathbb{R}$, do we have

- $\varphi((a+i b)+(c+i d))=[a+b x]_{h}+[c+d x]_{h}$, and
- $\varphi((a+i b) \cdot(c+i d))=[a+b x]_{h} \cdot[c+d x]_{h}$?

3. There are two possible equivalence relations on the two-element set $\{1,2\}$:

- The relation \sim_{A} that says that $1 \sim_{A} 1$ and $2 \sim_{A} 2$ are true, and that $1 \sim_{A} 2$ and $2 \sim_{A} 1$ are false.
- The relation \sim_{A} that says that $1 \sim_{A} 1,2 \sim_{A} 1,1 \sim_{A} 2$, and $2 \sim_{A} 2$ are all true.

For any n, let E_{n} denote all of the possible equivalence classes on the set $\{1,2, \ldots n\}$. Find a recurrence relation for E_{n}. (For example: we defined the Fibonacci numbers recursively via the equation $f_{n+1}=f_{n}+f_{n-1}$. In this problem, you are being asked to create an recursive expression for E_{n}; i.e. a way to express E_{n} in terms of earlier terms.)
4. Let X be some set, and $S \subseteq X \times X$ be a relation on the set X.
(a) Prove that there is some equivalence relation $R \subset X \times X$ such that $S \subseteq R$. (If you're not comfortable with the subset notation: this is a relation R with the property that if $x S y$, then $x R y$ must also hold.)
(b) Take the collection of all equivalence relations T such that $T \supseteq S$. Let $R_{S}=\bigcap_{T} T$ denote the intersection of all of these equivalence relations: in other words, R_{S} is a relation where $x R_{S} y$ holds only if $x T y$ holds for each T.
Show that R is an equivalence relation. (We think of R as the equivalence relation generated by S.)
(c) Consider the set $X=\{1,2,3,4,5\}$ and relation $S=\{(1,2),(3,4)\}$: i.e. S thinks that $1 S 2,3 S 4$ are both true, and that all other relations are false.
Find the equivalence relation R_{S} generated by S.
5. (a) Give an equivalence relation \sim on \mathbb{R} such that the equivalence class of any element is size 4.
(b) Give an equivalence relation \sim on \mathbb{R} such that there are infinitely many equivalence classes of \mathbb{R} under \sim, and each equivalence class has the same cardinality as \mathbb{R}.

